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ABSTRACT

Biometric gait recognition has received substantial attention
of researchers in the recent years due to its applications in
numerous fields of computer vision, particularly in visual
surveillance and monitoring systems. Most existing gait
recognition algorithms solve the problem of person identifi-
cation either by constructing a human body model based on
various skeletal data characteristics such as joints positioning
and their orientation, or use gait features, e.g., stride length,
gait patterns and other shape templates. Such approaches re-
quire the extraction of the human-body’s silhouette, contour,
or skeleton from the images, and therefore their performance
highly depends on the silhouette segmentation accuracy.
In this paper, we propose a novel gait recognition algorithm
which exploits spatiotemporal motion characteristics of a per-
son, which does not need silhouette or skeleton extraction at
all. The proposed algorithm computes a set of spatiotemporal
features from the video sequences and uses them to gener-
ate a codebook. Fisher vector is used to encode the motion
descriptors which are classified using linear Support Vector
Machine (SVM). The proposed algorithm is evaluated on
three benchmark gait datasets: TUM GAID, CASIA-B, and
CASIA-C. It achieved excellent results on all datasets which
demonstrate the effectiveness of the proposed algorithm.

Index Terms— Gait recognition, Spatiotemporal features,
Fisher vector encoding, Visual surveillance

1. INTRODUCTION

Biometrics has received significant research efforts in the re-
cent years due to its growing applications in authentication,
access control and surveillance. Studies [1–3] have shown
that individuals can be identified by using different distin-
guishing biological traits. Biometrics refers to the physio-
logical or behavioral characteristic of the human, e.g., finger-
prints, facial features, iris, DNA, voice, and gait, which have
proven to be unique for each individual. Gait refers to the
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walking style of a person and is considered an important cue
for person identification. Unlike other biometrics, gait does
not require human interaction with the system which makes
it the most suitable for surveillance systems. Moreover, gait
biometrics can be used at low resolution in a non-invasive and
hidden manner. Gait recognition, however, is challenging as
many factors may affect it such as clothing, shoes, walking
surface and injuries. Gait may not be as powerful as other
biometric modalities such as fingerprints to identify the indi-
viduals, however its characteristic to recognize human from
distance and without any interaction makes it irreplaceable in
many applications such as visual surveillance.

The gait recognition approaches in literature can be di-
vided into two broad categories: model-based and model-free
approaches. The model-based techniques build the human
body structure and motion models by tracking the different
body parts and joint position over time using the underlying
mathematical structure [4], and use them to recognize the peo-
ple. These models such as [5–7] may include stick figure,
interlinked pendulum and ellipse are generally constructed
based on the prior knowledge of the human body shape. Re-
cent studies have demonstrated that such models are capable
to deal with the occlusion and rotation problems. However,
they are computationally inefficient and sensitive to the qual-
ity of video data, and therefore they are not considered suit-
able for real-world and real-time applications [8].

The model-free gait recognition approaches do not use a
structural model of human motion, instead they usually op-
erate on the sequence of extracted human silhouettes. In par-
ticular, such algorithms either use the temporal information of
human motion [9–11] or construct a template from silhouettes
images [12–15], and use them to recognize the individual’s
gait. The gait recognition methods [16,17] extract the human
silhouette from the background using the depth and skeleton
information from Microsoft Kinect, and compute various fea-
tures for gait recognition. However, the biggest restriction is
the field-of-view, which is very limited (1 − 4 meters) [18].
In contrast to model-based gait recognition approaches, the
model-free techniques have shown more promising recogni-
tion results on various gait datasets. Moreover they are com-
putationally efficient too.

In this paper, we present a novel spatiotemporal gait repre-



sentation using dense trajectories to characterize the distinc-
tive motion traits of human gait. Unlike most existing gait
recognition algorithms that require the extraction of the hu-
man body silhouette or other skeletal information, the pro-
posed approach is model-free. It neither involves any kind of
human body segmentation nor requires gait cycle estimation.
Experiments worked out on three well-known gait databases
confirm the effectiveness of the proposed algorithm.

2. PROPOSED METHOD

The proposed gait recognition algorithm works in three steps.
First, dense trajectories are generated based on optical flow
field and their motion information is encoded using local de-
scriptors. Second, a codebook based on Gaussian Mixture
Model (GMM) is built and the local descriptors are encoded
using Fisher vector (FV). Finally, the computed features are
classified using linear Support Vector Machine (SVM) to rec-
ognize the individuals.

2.1. Motion descriptor estimation

Recently, dense trajectories have demonstrated excellent re-
sults in action recognition [19, 20]. Our motivation to use
dense trajectories is that they encode the local motion patterns
of gait and can be easily computed from video sequences.
To extract dense trajectories, a set of dense points is selected
from each frame and tracked in successive frames using dis-
placement information from a dense optical flow field. Given
a trajectory of length L, a sequence S of displacement vector
∆Pt is computed as given below [19]:

S = (∆Pt, · · · ,∆Pt+L−1), (1)

where ∆Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − yt). Pt and
and Pt+1 represent a point in frame t and t + 1 respectively.
The sequence vector S is then normalized by the sum of the
magnitudes of the displacement vector. That is,

S′ =
(∆Pt, · · · ,∆Pt+L−1)∑t+L−1

j=t ‖∆Pj‖
(2)

The descriptor S′ encodes the shape of the trajectory.
Wang et al. [19] proposed the Histogram of Oriented Gradi-
ent (HOG) and Histogram of Optical Flow (HOF) features
along the dense trajectories. In addition, to encode the rela-
tive motion information between pixels, the derivatives along
the horizontal and the vertical components of the optical flow
are also computed, known as Motion Boundary Histograms
and are represented as MBHx and MBHy respectively. We
evaluated various combinations of these descriptors on TUM
GAID database [17], the results are shown in Fig. 1. These
results reveal that HOG in combination with MBH outper-
form the rest and achieves up to 100% recognition accuracy.
HOG captures the characteristics of a person’s static appear-
ance and MBH highlights the information about the changes
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Fig. 1. Performance of various motion descriptors for gait
recognition on TUM GAID gait database.

in optical flow field. Therefore, combining the person’s ap-
pearance information with local motion characteristics has
great impact on the identification of a person.

2.2. Feature encoding

Inspired by the recent popularity of FV encoding in image
classification, object detection and action recognition [20,21],
we encode our local descriptors using FV and a codebook
based on GMM. FV is derived from the Fisher kernel [21]
that combines the characteristics of both discriminative and
generic approaches. The basic idea is to model a feature set by
gradient of its log-likelihood function with respect to model
parameters. To build a codebook, we used GMM from one
million randomly selected features of each descriptor. GMM
is a generative model that defines the distribution over feature
space and can be described:

p(X | θ) =
∑K
i=1 wiN (x | µi,

∑
i) (3)

where i = 1, 2, ...,K is the mixture (i.e., cluster) num-
ber, wi, µi and

∑
i are the weight, mean vector and co-

variance matrix of the ith cluster, respectively. Further-
more, θ = {wi, µi,

∑
i} is the set of model parameters, and

N (X | µi,
∑
i) represents the D-dimensional Gaussian dis-

tribution. For a given feature set X = {xt, t = 1, ..., T},
the optimal parameters of GMM are learned using maximum
likelihood estimation. The soft assignment of data xt to
cluster i can be defined as,

qt(i) =
wiN (xt | µi,

∑
i)∑K

j=1 wjN (xt | µj ,
∑
j)

(4)

We assume that each model represents a specific motion
pattern shared by the local descriptors in the codebook. The
Expectation Maximization (EM) algorithm of GMM applies
soft assignments of the feature descriptor to each mixture
component. Therefore, the local descriptors will be assigned
to multiple clusters in a weighted manner using the posterior
component probability given by the descriptor. The feature



setX can be modeled into a vector by computing the gradient
vector of its log-likelihood function at the current θ,

FX =
1

T
∇θlogp(X|θ), (5)

where FX represents the FV and ∇θ is the gradient of the
log-likelihood function, which describes the contribution of
parameters in the generation process. Let xt be the local de-
scriptor, qt(i) be the soft assignment of xt to cluster i, σi is
the diagonal element of

∑
i; ui and vi are the gradient vector

with respect to µi and σi, respectively [22]:

ui =
1

T
√
wi

T∑
t=1

qt(i)
xt − µi
σi

(6)

vi =
1

T
√

2wi

T∑
t=1

qt(i)

[
(xt − µi)2

σ2
i

− 1

]
, (7)

Equation (6) and (7) are known as the first and the second
order differences of descriptor points to cluster centers, re-
spectively. The final gradient vector (i.e., FV encoding for
the set of local descriptors X) is computed by concatenating
the all u and v for all K clusters. That is,

f = [u>1 , v
>
1 , u

>
2 , v

>
2 , ....., u

>
K , v

>
K ]> (8)

The total size of encoded vector is 2KD, where K is the total
number of clusters and D is the dimension of the descriptor.
We encode our HOG, MBHx and MBHy descriptors using the
above described method and fuse them using representation
level fusion [20].

2.3. Gait classification

The encoded vectors are classified using Linear Support Vec-
tor Machine (SVM). SVM is considered a powerful tool for
solving classification problems in many applications [23,24].
Due to the high dimensionality of our features, we decided to
use SVM as a classifier. In contrast to SVM, the other similar-
ity based classifiers like K-Nearest Neighbor and probability
based classifiers such as Naive Bayes do not perform well on
high dimensional features [23]. SVM first maps the training
samples in high dimensional space and then extracts a hyper-
plane between the different classes of objects using the prin-
ciple of maximizing the margin. Because of this principle,
the generalization error of SVM is theoretically independent
from the number of feature dimensions. We used LIBLIN-
EAR SVM library [25] for classification.

3. EXPERIMENTS AND RESULTS

The performance of the proposed method is evaluated on
three popular benchmark gait recognition databases: TUM
GAID database [17], CASIA B database [26] and CASIA C
dataset [27]. In all experiments, the local descriptors on each
video sequence are computed using dense trajectories. The
codebook size K is empirically computed and set to 32.

Table 1. Performance evaluation on TUM GAID database.
Avg. is the weighted average score of each method. The best
results are in bold font.

Method N B S TN TB TS Avg.

GEI [17] 99.4 27.1 56.2 44.0 6.0 9.0 56.0
GEV [17] 94.2 13.9 87.7 41.0 0.0 31.0 61.4
SVIM [30] 98.4 64.2 91.6 65.6 31.3 50.0 81.4
CNN-SVM [29] 99.7 97.1 97.1 59.4 50.0 62.5 94.2
CNN-NN128 [29] 99.7 98.1 95.8 62.5 56.3 59.4 94.2
H2M [31] 99.4 100.0 98.1 71.9 63.4 43.8 95.5
DCS [31] 99.7 99.0 99.0 78.1 62.0 54.9 96.0
PFM [28] 99.7 99.0 99.0 78.1 62.0 54.9 96.0

Proposed 99.7 100 99.7 68.8 71.9 53.1 96.5

3.1. Results on TUM GAID database

TUM GAID is one of the largest gait databases comprising
3, 370 gait sequences of 305 subjects. It was recorded in two
seasons, winter and summer, using Microsoft Kinect at 30
frames-per-second (f/s). A subset of 32 subjects participated
in both seasons. Therefore, there is a substantial variation in
the clothing of the participants which makes it a challenging
gait database. Ten walk sequences were captured for each
subject, namely normal walk (N ), walk with backpack (B)
and walk with coating shoes (S). Each subject in the com-
mon subset of 32 people has 10 more sequences referred to as
normal walk after time (TN ), walk with backpack after time
(TB), and walk with coating shoes after time (TS).

The gallery and probe set division are done similarly
to [17]. The first four recordings of N (i.e., N1 − N4)
for each person are used as gallery set, and the sequences
N5 − N6, B1 − B2 and S1 − S2 are used in probe set, giv-
ing three experiments namely N , B and S. In the next set
of experiments labeled as TN , TB and TS, the sequences
N7 −N8, B3 − B4 and S3 − S4 are used in probe set, while
the gallery set is the same. The recognition results achieved
by the proposed algorithm and other gait recognition meth-
ods on TUM GAID database are presented in Tab. 1. The
proposed algorithm achieves the best results on N , B, S,
and TB experiments. In TN and TS experiments PFM [28]
and CNN-SVM [29] performs better than our method respec-
tively. On average the proposed algorithm achieved the best
recognition rate 96.5%.

3.2. Results on CASIA-B database

The CASIA-B gait database contains the walk sequences of
124 subjects, recorded from 11 different viewing angles in a
well controlled laboratorical environment at 25 f/s. Three dif-
ferent variations in walking style namely normal walk (nm),
walk with bag (bg) and walk with coat (cl) are recorded for
each person. There are 10 walking sequences for each sub-
ject: 6 of normal walk, 2 of walk with carrying bag and 2 of
walk with wearing-coat. In experiments, the first 4 out of 6



Table 2. Performance evaluation on CASIA-B database. The
best results are marked in bold.

Method nm bg cl Avg.

TM [33] 97.6 52.0 32.7 60.8
Shiqi [26] 97.6 52.0 32.2 60.8
HSD [34] 94.5 62.9 58.1 71.8
Mj+ACDA [33] 100.0 91.0 80.0 90.3
DCS+H2M [31] 100.0 99.2 72.6 90.6
PFM [28] 100.0 100.0 85.5 95.2
SDL [32] 98.4 93.5 90.3 94.1

Proposed 100.0 100.0 86.7 95.6

nm sequences of each subject are used in gallery set. Three
different experiments are conducted using the remaining two
sequences of nm, bg and cl in probe set separately. Perfor-
mance comparison of the proposed method with the state-of-
the-art methods on CASIA-B database is outlined in Tab. 2.
The results show that on experiment cl, SDL [32] performs
better than our algorithm, while on experiments nm and bg
our method achieves the best results, with the highest average
recognition rate 95.6%.

3.3. Results on CASIA-C database

The CASIA-C database contains the gait sequence of 153
subjects with four variations: normal walk (fn), slow walk
(fs), fast walk (fq), and walk with a backpack (fb). The
videos were captured at night using a low resolution thermal
camera at 25 f/s. Each subject has 4 sequences of fn and
2 sequences of each fs, fq and fb. A total of four exper-
iments are conducted. In the first experiment, 3 sequences
of fn are used as gallery set and the fourth fn sequence is
placed in probe set. In the next three experiments, fs, fq,
and fb forms the probe set, while the gallery set is same. The
results achieved by the proposed algorithm and the state-of-
the-art methods are presented in Tab. 3. In experiments fn,
fq and fb our methods achieves the best results, whereas in
fs RSM [35] performs marginally better than our algorithm.
Our method achieves the best average recognition rate 99.8%.

The results presented in Tables 1-3 confirm the effec-
tiveness of the proposed gait recognition algorithm. On all
three databases, the proposed algorithms has shown very
convincing results outperforming the state-of-the-art in most
experiments. In particular, the average recognition perfor-
mance of the proposed algorithm is the highest on all three
gait databases.

4. CONCLUSION

In this paper, we presented a novel model-free gait recogni-
tion algorithm which exploits the spatiotemporal character-
istics of a human motion. In contrast to most existing gait

Table 3. Performance evaluation on CASIA-C database. The
best results are bolded.

Methods fn fs fq fb Avg.

NDDP [36] 97.0 83.0 83.0 17.0 70.0
HSD [34] 97.0 86.0 89.0 65.0 84.2
Dadshahi et al. [37] 93.0 83.0 85.0 21.0 70.5
Tan et al. [38] 98.4 91.3 93.7 24.7 77.0
RSM [35] 100.0 99.7 99.6 96.2 98.9
SDL [32] 95.4 91.2 92.5 81.7 90.2
PFM [28] 100.0 98.7 100.0 99.3 99.5

Proposed 100.0 99.4 100 99.7 99.8

recognition methods, the proposed solution does not involve
any human body segmentation. The proposed method extracts
dense trajectories by tracking a set of points in the succes-
sive frames of the walk sequence. Local descriptors based
on MBH and HOG features are computed and encoded using
Fisher vector encoding. The classification is performed using
linear support vector machine. The experimental results on
three popular gait benchmark databases reveal that the pro-
posed algorithm is highly accurate.
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