A Parallel Algorithm for Change Detection

Mian M. Mubasher, M. Shahid Farid, Abdul Khaliq, Muhammad Murtaza Yousaf
Punjab University College of Information Technology
University of the Punjab, Lahore, Pakistan
Email: mian.mubasher @gmail.com, shahid.fareed, abdul.khaliq, murtaza@pucit.edu.pk

Abstract—Change detection is an important research area
in image and video processing due to wide applications in
medicine, surveillance, remote sensing, geographical information
processing and in defense and security. This paper presents
a real-time, distributed algorithm to detect changes in videos.
The proposed algorithm may be used in many change detection
applications that require real-time performance like CCTV
Security Surveillance Camera Systems. In such applications fast
change detection is very important. Many a times, we need to
search a video captured by security camera for an event with
significant change. Doing it manually is very time consuming and
cumbersome, a fast automatic algorithm is desired in such cases.
The proposed parallel algorithm runs on a cluster and detects the
significant changes in real-time. The algorithm is implemented
in C using MPICH2 in Linux environment and is tested over a
number of videos for correctness, accuracy and execution time.
The proposed approach is also compared with existing change
detection techniques and gained speedup of approximately 3.4
on cluster with 4 average machines.

Index Terms—Change detection, Distributed algorithm, Paral-
lel algorithm, Security camera application.

I. INTRODUCTION

Change detection is the measuring the changed area in a
video over time. Change detection is a very important area in
computer vision and image processing due to its widespread
applications. It used to determine land erosion, crops cultivated
in a region and other such GIS processes. Change detection
is used in video surveillance [1]] to monitor the activities per-
formed in a particular area under observation. These activities
may include object detection, identification and classification
[2], [3], humane action analysis [4]], [S], [6], [7], determining
the number of vehicles on the road [8], [9], [LO], [11]. Change
detection is used in geographical information processing to
detect the changes in a particular area of a region by comparing
two time variant aerial photographs or satellite images [12],
(L3]], [14].

Change detection may be used in security surveillance
camera systems to detect the significant change in the scene.
Based on this change, the system may take appropriate action
like ring the alarm or call the security office. To use change
detection in such real-time applications, a very fast, robust and
accurate algorithm is required. Many excellent algorithms have
been proposed in literature to detect change in video. These
algorithm may not be as useful in security surveillance system
where a real-time algorithm is required. This motivation led
us to develop a parallel algorithm for change detection, that
must be able to process at least 30 frames in a second so that
it can be used with live camera streams.

The simplest way to detect change in two frames is by
subtracting one from other and thresholding the result. This
technique is too simple to handle complex cases like scene
with varying illumination, subtle changes in some parts of
the data etc. An extension of image differencing technique
was presented in [15] that is based in super-pixel change
detection. An class of algorithms computes a running mean
background image and takes some detection measure like
difference, variance, co-variance etc from the current frame to
the mean background image. These techniques are better than
simple subtraction but they too suffer from the above described
problems. A pyramid based change detection approach was de-
scribed in [16]]. An other hierarchical approach is described in
[[17]. Stauffer and Grimson described an adaptive background
subtraction model [18]. Another adaptive background model
was proposed in [19].

Change detection in color images is a sub-area in change
detection that is dedicated to background subtraction or change
detection in color images, videos. Fisher described change
detection techniques in RGB and HSI color models [20].
An illumination invariant change detection approach was
described by Cavallaro [21]. The technique used color edge
detection with image differencing to detect the change. Malik,
R. et.al; used change detection in traffic applications [22].
They proposed an approach to detect and extract the road
signs.

Change detection is used in many applications like detecting
and tracking of human activities in indoor or outdoor. Much
research is going on in this field like [23] in which a real
time visual surveillance system was proposed. The technique
works for infrared videos and detects the multiple people in a
science, segment them and labels them to track their body
parts like head, nose, feet etc. An other such system that
detects multiple human and tracks them is presented by Tao
Zhao et.al [24]. A Hidden Markov Model based technique
for human behavior understanding was presented in [25] from
live stream in a nursing environment. Keming Chen described
Change detection based on adaptive Markov Random Fields in
[26]]. Various other methods have been developed and proposed
for multiple human detection and tracking are presented like
[27], [28]], [29], [30]. A crowed segmentation from background
image was presented in [31]. This technique is used active
basis model for for change detection. A good study on change
detection is described in [32], [33]], [21], [34]].

To the best of our knowledge, no parallel algorithm has
been proposed yet for change detection except [35]. In this

paper the authors proposed a distributed algorithm for change
detection in satellite images of land to determine the changes.
Their algorithm takes two multispectral images. Each band is
processed by a node in the parallel environment.

In this manuscript a distributed algorithm for change de-
tection is proposed that works upon a cluster. The proposed
approach is based on the classical Gaussian change detection
algorithm which is implemented in multi-processor environ-
ment. The algorithm works in two steps, first, the algorithm
is trained on a set of background frames and in second step,
the frames tested with the background model to detect the
change. In the nest section, the proposed algorithm is de-
scribed. In section[[TI]time complexity analysis of the proposed
algorithm is presented and in section [[V| experimental results
are presented. Section compares the results with existing
classical technique and measure the speedup ratio. The paper
is concluded in section [V

II. PROPOSED DISTRIBUTED ALGORITHM

The proposed distributed change detection algorithm works
in two phases. The first phase is computing the background
model using Gaussian distribution model. In the second phase,
for each pixel in a frame the probability of likelihood that this
pixel belongs to the background model is computed and the
pixel is classified as foreground if its value is greater than a
threshold and background otherwise and this process is done
in parallel way. The pixels categorized as fore ground form
the changed region. The following two subsection explain the
algorithm in detail.

A. Computing background model

We assume that the color variation of a particular pixel in
a set of frames follows the Gaussian distribution. Based on
this assumption, we construct a Gaussian background model,
1, 2. The model is constructed from k£ number of background
frames. Let the f; be the i*" frame in the set and the size of
each frame is m x n x 3. Using these k background frames,
the mean p and the covariance X are computed. The p is the
mean of red, green and blue components of every pixel in k
frames. That is,

1= [prs g,)"

where ., 114 and j1;, mean of red, green and blue components
with size m x n and are computed as follows:

k

/J”r‘(xayv]-) = % ;fz(xayy]-)
&

ﬂg(‘r,y,2) = % Z:lfl(xay72) (1)
k

Mb(‘r>y73) :% fl($7y73)

<
Il
-

Here, f; is the it" frame. The size of wis m x n x 3. The
covariance ¥ for each pixel (z,y) is computed as:

O (r,r) (567 y) O(r,9) ({E, y) O(rb) (1’, y)
D @ y) = |0 (1) 0@y oEy(®y)| @)
O (b,r) (-%',y) O(b,g) (l‘vy) O (b,b) (x7y)

where o is variance between two color components and is
given by Equation 3]

k
O(r,r) (l‘,y) = ﬁ Z((fl(xﬂ Y, 1) - :U’T(xvy7 1))2
i=1

1 k

Trg) (@) = —7 Z((fi(% Yy, 1) — pur(, 9, 1)
(Fir,2) — o, ,2)

() (T, Y) = ﬁ Zk:((fi(% y, 1) — pr(2,9,1)
Fi.3) — sy, 3) G

o (#8) = 7 i«mx, 9:2) = 1 (2,,2))?

o

oo (@ y) = =7 2_((fi(2.5,2) = pg(@,9,2)
Fir.3) — (.9, 3))

oy = i((fm, 0.3) ~ (9, 3)’

The value of k is important for a good background model.
It is found from the experiments that £ > 50 results in a
good background model. From Equation [3] you can see that
a lot of computation is required. Since, this computation is
done only once, it is not advantageous to parallelize this step.
This completes the background modeling step. Based on p
and X, the change in each frame is detected in a parallel way,
explained in the next section.

B. Change detection

After the construction of background model, the system is
ready to detect the change. For each pixel (z,y) of an input
frame, its likelihood P(x|u, X)) with the background model is
computed. This probability is compared with the threshold 7
and pixel (x,y) is marked as background (unchanged) pixel
if its probability is greater than the threshold 7 and marked as
foreground (changed) pixel otherwise. The likelihood of pixel
X = [X,Xg,Xp]” is computed as:

1

eni/El

To save the computations, instead of computing the likelihood,
we may compute the (x — p)?(X) 71 (x — p) only, called Ma-
halnobis distance. The operation of computing the likelihood
involves the following computational steps:

P(x|p, %) = ez =T (2) 7 (x—p) 4)

« Evaluation of (27)2. Since, there is no variable in com-
putation, it may be evaluated at the start of the process

once.

. \/ﬁ has to be computed for each pixel as each pixel
in the background model has a different value of 3.
This operation involves computing the determinant of
Y(x,y) followed by a square root operation. Computing
the determinant takes 12 multiplications and 5 addition
and subtraction operation.

o (x — u)T is subtraction of two matrices followed by a
transpose operation.

o X! computes the inverse of ¥ and requires O(p?) time
for a matrix of dimension p X p.

e X — 4 requires same cost as step 3.

This is evident that computing likelihood is a very costly
operation and this computation is done for each pixel in the
frame. In a live stream from camera, around 30 frames of
size m x n are received in a second and this operation has
to be done for each pixel. Common resolution of camera is
1280 x 1024, that is 1, 310, 720 number of pixels in one frame
and thus, the total number of pixels in frames received in
one second are 39,321,600. On the average, one likelihood
computation requires around 60 operations, giving the total
number of operation to be performed in one second are
2,359, 296, 000 that is about 36 million operations. Performing
such a huge number of complex computational operations in
one second may not be feasible on a single machine in real
time mode; massive parallelism is required in this case.

To achieve the real time change detection, the proposed
algorithm runs on a cluster of computers. It divides each frame
into a number of sub-frames and distributes the them amongst
the available nodes in the cluster. Each node, then, computes
the change in its received data and returns the results back to
the manager node. The manager nodes collects the data from
the nodes and saves the resultant frame. Computing the mean
1 and covariance X is done as a pre-processing step in serial
way.

Let k be the number of nodes in the cluster and m xn be the
size of the frame. The cluster works in master-slave fashion.
The master nodes, on receiving a frame from the camera,
treats each of the m rows as an element and decomposes
the frame into 7' chunks where each chunk has £ rows in
it. The master node distributes each chunk amongst the &
nodes by using MPI_Scatter () call as shown in Figure
Each node performs computation on the received data
and sends the results back to the master node which uses
MPI_Gather () to gather the results received from the slaves
node. This process is repeated for every chunk in the frame
and result is accumulated. The code doing this process is given
in Appendix.

ITII. TIME COMPLEXITY ANALYSIS

The time complexity of computing the change detection
in frame of size m x n in serial way takes O(mn) time as
there mn number of pixels in the frame and computation is
done for each pixel. The proposed algorithm divides the total
number of pixels into k& buckets, each computed by a different
processing node. Hence, the time it takes to detect change in

A chunk of k frames

MPI_Scatter(Of L | | . |
2
\—> 3

k

77
v

7

77
v

-

k processing nodes

m x n frame

Fig. 1: Process of data distribution.

a frame is is decreased by a factor of k ideally, giving O("*)
time complexity. Though, theoretically this bound is correct
but practically the running of any parallel algorithm may not
be k times smaller than its serial time. This is because of the
communication cost involved in the inter-node communication
and the time spent in distributing the data and gather the
results. The actual speed-up of the proposed algorithm over
the traditional Gaussian change detection algorithm is given
the next section.

IV. EXPERIMENTS AND RESULTS

The proposed parallel algorithm is implemented in C with
OpenCV image processing library using MPICH2 on Linux
platform. The cluster used in experiments consists of 4 ma-
chines and is named ‘beowulf’ installed at P&DC LAB at
PUCIT. A number of experiments are done to evaluate the
effectiveness, correctness and robustness of the algorithm and
to measure the speed-up gain. The same experiments were
also carried out using the standard serial Gaussian change
detection approach and execution time were noted against each
experiment. Each machine in the cluster is Intel(R) Core(TM)2
Dou CPU with 2.19GHz processor with 1GB of RAM.

Results of five experiments are described in this section. In
the first experiment, the video has 80 number of frames and
took just 1.92 seconds to complete the change detection pro-
cess. The results of the detection are shown in Figure Figure 2]
(only few of the total frames are shown in these experiment).
Table [[| summarizes the experiments. The statistics shows the
effectiveness and speed of the algorithm. With only 4 average

TABLE I: Execution time for the given experiments. T, is
Execution Time is in seconds, 7 is the threshold used in
Mahalanobis and and + is the number of frames processed
per second.

Exp. No. | Frame Size | No. of frames | T}, T vy
1 640 x 480 80 1.92 | 20 | 41.57
2 640 x 480 67 1.65 | 45 | 40.49
3 640 x 480 43 1.03 | 40 | 41.74
4 384 x 288 264 6.49 | 21 | 40.65
5 392 x 296 54 1.35 | 20 | 40.15

TABLE II: Execution time for the given experiments using
serial approach. T is Execution Time is in seconds and 7 is
the frame rate achieved.

Exp. No. | Frame Size | No. of frames T ¥
1 640 x 480 80 6.60 | 12.12
2 640 x 480 67 5.71 11.73
3 640 x 480 43 345 | 12.46
4 384 x 288 264 21.31 | 12.39
5 392 x 296 54 4.63 | 11.66

TABLE III: Execution time comparison of serial and parallel
algorithms.

Exp. No. Ts T, Speed-up %5)
1 6.60 1.92 3.429
2 5.71 1.65 3.451
3 345 1.03 3.349
4 21.31 | 6.49 3.281
5 4.63 1.35 3.442

machines, approximately 40 frames are processed per second
which is enough to use it as in real time applications.

A. Speedup Comparison with Traditional Approach

The experiments reported in previous section were repeated
with a single processing machine with same specifications and
execution times were recorded. Table [l shows the execution
time with traditional change detection approach. A comparison
of execution time of parallel approach and serial approach
is presented in Table [[TI] It is found from the the proposed
parallel algorithm performs, on the average 3.391 times faster
than serial algorithm (see Figure[7). The gain in speedup is not
exactly 4 due data transmission and communication latency.

V. CONCLUSION

This paper presented a fast distributed algorithm for change
detection in videos. Change detection in real time is an
important task due to its vast and crucial applications in
different fields of life. It is a challenging because it requires
huge number of computations to done in a small amount of
time on a huge data, almost 30 frames in a second. The
proposed algorithm is based on Gaussian change detection
approach and computes the mean and covariance matrices
from a set of background frames. The master node decomposes
the incoming frame into a number of sub-frames, each sent
to a processing node. Using the mean and covariance, the
processing node computes the change in its sub-frame and
returns the results back to the master node. It is found from the
experiment that the proposed algorithm performs more than 3
times faster than the traditional change detection algorithm on
the cluster of 4 average computers.

REFERENCES

[1] R. Collins, A. Lipton, and T. Kanade, “A System for Video Surveillance
and Monitoring,” in American Nuclear Society 8th Internal Topical
Meeting on Robotics and Remote Systems, 1999.

45.00

40.00
35.00
30.00
25.00

—o—Serial

20.00 ~i—Parallel

15.00

10.00

5.00

Fig. 7: Comparison of serial and parallel execution times of
the 5 experiments.

[2] Feng Wang, Yu-Gang Jiang, and Chong-Wah Ngo, “Video event
detection using motion relativity and visual relatedness,” in Proceedings
of the 16th ACM international conference on Multimedia, New York,
NY, USA, 2008, MM 08, pp. 239-248, ACM.

[3] Christopher Wren, Ali Azarbayejani, Trevor Darrell, and Alex Pentland,
“Pfinder: Real-time tracking of the human body,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 19, pp. 780-785, 1997.

[4] Larry S. Davis, Sandor Fejes, David Harwood, Yaser Yacoob, Ismail
Haratoglu, and Michael J. Black, “Visual surveillance of human activity,”
in Proceedings of the Third Asian Conference on Computer Vision-
Volume II, London, UK, UK, 1997, ACCV 98, pp. 267-274, Springer-
Verlag.

[5] Rodrigo Cilla, Miguel A. Patricio, Antonio Berlanga, and José M.
Molina, “A probabilistic, discriminative and distributed system for the
recognition of human actions from multiple views,” Neurocomput., vol.
75, no. 1, pp. 78-87, Jan. 2012.

[6] Ronald Poppe, “A survey on vision-based human action recognition,”
Image Vision Comput., vol. 28, no. 6, pp. 976-990, June 2010.

[7]1 P. Turaga, R. Chellappa, V.S. Subrahmanian, and O. Udrea, “Machine
recognition of human activities: A survey,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 18, no. 11, pp. 1473 —
1488, nov. 2008.

[8] Zehang Sun, G. Bebis, and R. Miller, “On-road vehicle detection: a
review,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 28, no. 5, pp. 694 —711, may 2006.

[9] Hsu-Yung Cheng, Chih-Chia Weng, and Yi-Ying Chen, “Vehicle de-

tection in aerial surveillance using dynamic bayesian networks,” Image

Processing, IEEE Transactions on, vol. 21, no. 4, pp. 2152 -2159, april

2012.

Luo-Wei Tsai, Jun-Wei Hsieh, and Kuo-Chin Fan, ‘“Vehicle detection

using normalized color and edge map,” Image Processing, IEEE

Transactions on, vol. 16, no. 3, pp. 850 —864, march 2007.

H. Jianming, M. Qiang, W. Qi, Z. Jiajie, and Z. Yi, “Traffic congestion

identification based on image processing,” Intelligent Transport Systems,

IET, vol. 6, no. 2, pp. 153 —160, june 2012.

F. Wang, “A knowledge-based vision system for detecting land changes

at urban fringes,” Geoscience and Remote Sensing, IEEE Transactions

on, vol. 31, no. 1, pp. 136 —145, jan 1993.

Sotirios Gyftakis, Peggy Agouris, and Anthony Stefanidis, “Image-

based change detection of areal objects using differential snakes,”

in Proceedings of the 13th annual ACM international workshop on

Geographic information systems, New York, NY, USA, 2005, GIS 05,

pp. 135-142, ACM.

Minghui Tian, Shouhong Wan, and Lihua Yue, “A novel approach

for change detection in remote sensing image based on saliency map,”

in Proceedings of the Computer Graphics, Imaging and Visualisation,

Washington, DC, USA, 2007, CGIV 07, pp. 397402, IEEE Computer

Society.

Aniruddha Bose and Kunal Ray, “Fast change detection,”

Science Journal, vol. 61, no. 1, 2010.

C H Anderson, P J Burt, and G S Van Der Wal, “Change detection

and tracking using pyramid transform techniques,” SPIE Conference on

Intelligent Robotics and Computer Vision, vol. 2, pp. 283-310, 1985.

[10]

(11]

[12]

[13]

[14]

[15] Defence

[16]

Fig. 2: Experiment 1. The left most column shows a background frame on the top and its result after change detection at the
bottom. The top row from second to the right shows a sequence of input frames. The bottom row shows its corresponding
resultant frames with change detected in white.

Fig. 3: Experiment 2. The left most column shows a background frame on the top and its result after change detection at the
bottom. The top row from second to the right shows a sequence of input frames of a CCTV photage. The bottom row shows
its corresponding resultant frames with change detected in white.

Fig. 4: Experiment 3. The left most column shows a background frame on the top and its result after change detection at the
bottom. The top row from second to the right shows a sequence of input frames of a CCTV photage. The bottom row shows
its corresponding resultant frames with change detected in white.

Fig. 5: Experiment 4. The left most column shows a background frame on the top and its result after change detection at the
bottom. The top row from second to the right shows a sequence of input frames of a CCTV photage. The bottom row shows
its corresponding resultant frames with change detected in white.

Fig. 6: Experiment 5. The left most column shows a background frame on the top and its result after change detection at the
bottom. The top row from second to the right shows a sequence of input frames of a CCTV photage. The bottom row shows
its corresponding resultant frames with change detected in white.

(17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

James R. Bergen, P. Anandan, Th J. Hanna, and Rajesh Hingorani,
“Hierarchical model-based motion estimation,” 1992, pp. 237-252,
Springer-Verlag.

Chris Stauffer and W. Eric L. Grimson, “Learning patterns of activity
using real-time tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
22, no. 8, pp. 747-757, Aug. 2000.

J.M. McHugh, J. Konrad, V. Saligrama, and P.-M. Jodoin, “Foreground-
adaptive background subtraction,” Signal Processing Letters, IEEE, vol.
16, no. 5, pp. 390 —393, may 2009.

R. B. Fisher, “Change detection in color images,” 1999.

A. Cavallaro and T. Ebrahimi, “Change detection based on color
edges,” in Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE
International Symposium on, may 2001, vol. 2, pp. 141 —144 vol. 2.
R. Malik, S. Nazir, and J. Khurshid, “Colour based road sign detection
and extraction from still images,” in Cybernetic Intelligent Systems
(CIS), 2010 IEEE 9th International Conference on, sept. 2010, pp. 1
—6.

Ismail Haritaoglu, Davis Harwood, and Larry S. David, “W4: Real-time
surveillance of people and their activities,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 22, no. 8, pp. 809-830, Aug. 2000.

Tao Zhao, Manoj Aggarwal, Thomas Germano, Ian Roth, Alexandar
Knowles, Rakesh Kumar, Harpreet Sawhney, and Supun Samarasekera,
“Toward a sentient environment: real-time wide area multiple human
tracking with identities,” Mach. Vision Appl., vol. 19, no. 5-6, pp. 301-
314, Sept. 2008.

Pau-Choo Chung and Chin-De Liu, “A daily behavior enabled hidden
markov model for human behavior understanding,” Pattern Recogn.,
vol. 41, no. 5, pp. 1589-1597, May 2008.

Keming Chen, Chunlei Huo, Jian Cheng, Zhixin Zhou, and Hanqing Lu,
“Change detection based on adaptive markov random fields,” in Pattern
Recognition, 2008. ICPR 2008. 19th International Conference on, dec.
2008, pp. 1 —4.

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Chin-De Liu, Yi-Nung Chung, and Pau-Choo Chung, “An interaction-
embedded hmm framework for human behavior understanding: with
nursing environments as examples,” Trans. Info. Tech. Biomed., vol.
14, no. 5, pp. 1236-1246, Sept. 2010.

Mio Nishiyama and Tadashi Shibata, ‘“Normalized scoring of hidden
markov models by on-line learning and its application to gesture-
sequence perception,” in Proceedings of the 16th IEEE international
conference on Image processing, Piscataway, NJ, USA, 2009, ICIP’09,
pp. 3529-3532, IEEE Press.

Lu Wang and Nelson H. C. Yung, “Extraction of moving objects from
their background based on multiple adaptive thresholds and boundary
evaluation,” Trans. Intell. Transport. Sys., vol. 11, no. 1, pp. 40-51,
Mar. 2010.

Yassine Benabbas, Nacim Thaddadene, and Chaabane Djeraba, “Motion
pattern extraction and event detection for automatic visual surveillance,”
J. Image Video Process., vol. 2011, pp. 7:1-7:15, Jan. 2011.

Bin Lai, Deng Yi Zhang, Zhi Yong Yuan, and Jian Hui Zhao, “Crowd
segmentation from a static camera,” in Proceedings of the 4th in-
ternational conference on Intelligent Computing: Advanced Intelligent
Computing Theories and Applications - with Aspects of Theoretical and
Methodological Issues, Berlin, Heidelberg, 2008, ICIC 08, pp. 1134—
1140, Springer-Verlag.

R.J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change
detection algorithms: a systematic survey,” Image Processing, IEEE
Transactions on, vol. 14, no. 3, pp. 294 =307, march 2005.
Mohammad Imroze Khan, Bibhudendra Acharya, and Shrish Verm,
“Comparison between different illumination independent change detec-
tion techniques,” in Proceedings of the 2011 International Conference
on Communication, Computing & Security, New York, NY, USA,
2011, ICCCS 11, pp. 347-350, ACM.

Ying Wu and Ting Yu, “A field model for human detection and tracking,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.
28, no. 5, pp. 753 =765, may 2006.

F. Pop, “Distributed algorithm for change detection in satellite images
for grid environments,” in Parallel and Distributed Computing, 2007.
ISPDC °07. Sixth International Symposium on, july 2007, p. 41.

APPENDIX
SOURCE CODE OF PROPOSED ALGORITHM

main ()

int main(int argc, charx argv([])
{

/+ Initializations, trainging part, computing covariance and mean are not given here x/

if (rank==0) {

j=0;

start = clock();
}

while (1) {

if (rank==0) {

hasFrame = 1;

testFrame = cvQueryFrame (capture);

if (!testFrame) {

hasFrame = 0;

}

}
if (MPI_Bcast (&hasFrame, 1, MPI_INT, 0, MPI_COMM_WORLD) != MPI_SUCCESS)

return EXIT_FAILURE;

if (!'hasFrame)
break;

for (i=0;i<frHeight/size;++1) {
if (rank==0) {
t =1 » blockSize;
memcpy (rawTestingRows, testFrame->imageData+t, blockSize);

if (MPI_Scatter (rawTestingRows, rowSize,MPI_CHAR, rawTestRow, rowSize,MPI_CHAR, 0,MPI_COMM_WORLD) !=MPI_SUCCESS)
return EXIT_FAILURE;

cvSetData (aTestFrame, rawTestRow, rowSize);
resultFrame = computeMahalaNobis (aTestFrame, m, c, inputs.threshold, inputs.outputMode, 1, frWidth, (i*size)+rank);

memcpy (rawTestRow, resultFrame->imageData, rowSize);
cvReleaseImage (&resultFrame) ;

if (MPI_Gather (rawTestRow, rowSize, MPI_CHAR, rawTestingRows, rowSize, MPI_CHAR, 0, MPI_COMM_WORLD) != MPI_SUCCESS)
return EXIT_FAILURE;

if (rank==0)
memcpy (finalResultFrame->imageData+t, rawTestingRows, blockSize);

}

if (rank==0) {

++3;

cvWriteFrame (writer, finalResultFrame);
}
}

// Compute the execution time

if (rank==0) {

cvReleaseVideoWriter (&writer);

end = clock();

elapsed = (end - start) / (double)CLOCKS_PER_SEC;
printf ("computation time (seconds): $f\n", elapsed);
printf ("total number of frames tested: %d\n", j-1);

computeMahalaNobis ()

IplImage* computeMahalaNobis (IplImagex testFrame, mean** m, covx* c, float threshold, int outputMode,
int frHeight, int frWidth, int currentRow)
{
IplImagex retval;
int 1, 3;
float d;
CvScalar p;
mean temp;
cov temp_cov;

retval = cvCreatelmage (cvSize (testFrame->width,testFrame->height), testFrame->depth, testFrame->nChannels);
for (1=0; i<frHeight; ++1i) {
for (j=0; j<frwidth; j++) {
p = cvGet2D (testFrame, i, j);
i+=currentRow;

temp[0] = p.val[0]-m[i][3]([0];
temp[l] = p.vall[l]l-m[i][31[1];
temp[2] = p.vall[2]-m[i][J][2];

inverseCov(c([i] [j], temp_cov);

d = mahalaNobis (temp, temp_cov);
d = sqgrt(d);

if (!'finite(d)

) {
p.val[0] = p.val[l] = p.val[2] = O;

telse(
if (! (d>threshold))
p.val[0] = p.val[l] = p.val[2] = 0;
else{
if (outputMode==0) {
p.val[0] = p.val[l] = p.val[2] = 255;
}

}
}
i-=currentRow;
cvSet2D (retval, i, j, p);
}
}
return retval;

}

	Introduction
	Proposed Distributed Algorithm
	Computing background model
	Change detection

	Time Complexity Analysis
	Experiments and Results
	Speedup Comparison with Traditional Approach

	Conclusion
	References
	Appendix: Source Code of Proposed Algorithm

