
CC-112 Programming Fundamentals

Recursion

Nazar Khan

Department of Computer Science

University of the Punjab

Recursion Recursion vs. Iteration

Recursion

I A recursive function is a function that calls itself either directly or

indirectly.

I If a recursive function is called with a base case, the function simply

returns a result.

I If it's called with a more complex problem, the function divides the
problem into two conceptual pieces:

1. a piece that the function knows how to do, and
2. a slightly smaller version of the original problem.

I Because this new problem looks like the original problem, the function

launches a recursive call to work on the smaller problem.

Recursion Recursion vs. Iteration

Recursion

I For recursion to terminate, each recursive call is a slightly simpler version

of the original problem.

I The sequence of smaller and smaller problems must converge on the base

case.

I When the function recognizes the base case, the result is returned to the

previous function call, and a sequence of returns ensues all the way up the

line until the original call of the function eventually returns the �nal result.

I Recall the factorial function from Assignment 1.

unsigned long long int f a c t o r i a l = 1 ;
for (int coun t e r = number ; coun t e r >= 1 ; −−coun t e r)

f a c t o r i a l ∗= coun t e r ;

Recursion Recursion vs. Iteration

Recursive version of factorial (!)

1 // Recursive factorial function.
2 #include <stdio.h>
3

4 unsigned long long int factorial(unsigned int number);
5

6 int main(void)
7 {
8 // during each iteration , calculate
9 // factorial(i) and display result
10 for (unsigned int i = 0; i <= 22; ++i) {
11 printf("%u! = %llu\n", i, factorial(i));
12 }
13 }
14

15 // recursive definition of function factorial
16 unsigned long long int factorial(unsigned int number)
17 {
18 // base case
19 if (number <= 1) {
20 return 1;
21 }
22 else { // recursive step
23 return (number * factorial(number - 1));
24 }
25 }

Recursion Recursion vs. Iteration

Weakness of C

Even when we use unsigned long long int, we still can't calculate

factorials beyond 21! This points to a weakness in C (and most other

procedural programming languages) � namely that the language is not

easily extended to handle the unique requirements of various applications.

C++ is an extensible language that, through �classes�, allows us to create

new data types, including ones that could hold arbitrarily large integers

if we wish.

Recursion Recursion vs. Iteration

Example Using Recursion: Fibonacci Series

1 // Recursive fibonacci function
2 #include <stdio.h>
3

4 unsigned long long int fibonacci(unsigned int n); // function prototype
5

6 int main(void)
7 {
8 unsigned int number; // number input by user
9

10 // obtain integer from user
11 printf("%s", "Enter an integer: ");
12 scanf("%u", &number);
13

14 // calculate fibonacci value for number input by user
15 unsigned long long int result = fibonacci(number);
16

17 // display result
18 printf("Fibonacci (%u) = %llu\n", number , result);
19 }
20

21 // Recursive definition of function fibonacci
22 unsigned long long int fibonacci(unsigned int n)
23 {
24 // base case
25 if (0 == n || 1 == n) {
26 return n;
27 }
28 else { // recursive step
29 return fibonacci(n - 1) + fibonacci(n - 2);
30 }
31 }

Recursion Recursion vs. Iteration

Recursive Call Tree

Recursion Recursion vs. Iteration

Recursion vs. Iteration

I Both iteration and recursion are based on a control structure.
I Iteration uses an iteration statement
I Recursion uses a selection statement.

I Both iteration and recursion involve repetition.
I Iteration uses an iteration statement.
I Recursion achieves repetition through repeated function calls.

I Iteration and recursion each involve a termination test.
I Iteration terminates when the loop-continuation condition fails.
I Recursion terminates when a base case is recognized.

I Iteration and recursion can occur in�nitely.
I An in�nite loop occurs with iteration if the loop-continuation test never

becomes false.
I In�nite recursion occurs if the recursion step does not reduce the problem

in a manner that converges on the base case.

Recursion Recursion vs. Iteration

Recursion vs. Iteration

I Recursion su�ers from the overhead of repeated function calls.

I This can be expensive in both processor time and memory space.

I It should be implemented intelligently.

	Recursion
	Recursion vs. Iteration

