
CC-112 Programming Fundamentals

The C Preprocessor

Nazar Khan

Department of Computer Science

University of the Punjab

The C Preprocessor

I The preprocessor executes before a program is compiled.

I All preprocessor directives begin with #.

I Only whitespace characters and comments may appear before a

preprocessor directive on a line.

include

I The #include preprocessor directive includes a copy of the speci�ed �le.

I If the �lename is enclosed in quotes (�. . . �), the preprocessor begins

searching in the same directory as the �le being compiled.

I If the �lename is enclosed in angle brackets (< and >), as is the case for

C standard library headers, the search is performed in an

implementation-de�ned manner.

Symbolic constant using # define

I The #de�ne preprocessor directive is used to create symbolic constants

and macros.

I A symbolic constant is a name for a constant.

Macro using # define

I A macro is an operation de�ned in a #de�ne preprocessor directive.

1 # define PI 3 .14159
2 # define CIRCLE_AREA(x) ((PI) ∗ (x) ∗ (x))
3 void main ()
4 {
5 a r ea = CIRCLE_AREA(4) ;
6 }

What does the preprocessor do?

1. First, PI gets replaced by 3.14159 and x by 4 in the replacement text.

2. Then this expanded replacement text is substituted in line 5 to get

area = ((3.14159) * (4) * (4));

I Macros may be de�ned with or without arguments.

I Symbolic constants and macros can be unde�ned by using the #undef

preprocessor directive.

I Scope of symbolic constant or macro is from its de�nition until it's

unde�ned with #undef or until the end of the �le.

Avoid # define

I It is better to declare constants using the const keyword instead of using

#define.

I It is better to use functions instead of macros.

Debugging using conditional compilation

I Conditional compilation enables you to control the execution of

preprocessor directives and the compilation of program code.

I The conditional preprocessor directives evaluate constant integer

expressions. Cast expressions, sizeof expressions and enumeration

constants cannot be evaluated in preprocessor directives.

I Every #if construct ends with #endif.

I Directives #ifdef and #ifndef are provided as shorthand for #if

de�ned(name) and #if !de�ned(name).

I Multiple-part conditional preprocessor constructs may be tested with

directives #elif and #else.

Debugging using #error and #pragma directives

I The #error directive prints an implementation-dependent message that

includes the tokens speci�ed in the directive.

I The #pragma directive causes an implementation-de�ned action. If the

pragma is not recognized by the implementation, the pragma is ignored.

Debugging via assert

I Macro assert is de�ned in the header �le <assert.h> header.

I It tests the value of an expression.

assert(x<=10);

I If the value is 0 (false), it prints an error message and calls function

abort (de�ned in stdlib.h) to terminate program execution.

I Useful debugging tool for testing whether a variable has a correct value.

I When debugging is no longer needed, use

#define NDEBUG

to ignore all assert commands instead of manually removing or

commenting them out.

