
CC-112 Programming Fundamentals

Program Control in C

Nazar Khan

Department of Computer Science

University of the Punjab

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

The for loop

for statement header

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

The for loop

for statement �owchart

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

The for loop

I The general format of the for statement is

for (initialization; condition; increment) {

statements

}

I initialization expression initializes (and possibly de�nes) the control
variable.

I condition expression is the loop-continuation condition.

I increment expression increments the control variable.

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

The for loop

I All 3 expressions are optional.
I If control variable is initialized before the loop, initialization

expression can be omitted.
I If condition expression is omitted, C assumes it is true, thus creating an

in�nite loop.
I If increment is calculated by statements in the for statement's body or if no

increment is needed, increment expression can be omitted.

I The two semicolons in the for statement are required.

I Control variables de�ned in a for header exist only until the loop
terminates.

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

The for loop

I The initialization, loop-continuation condition and increment can contain
arithmetic expressions.

I For example, if x = 2 and y = 10, the statement

for (j = x; j <= 4 * x * y; j += y / x)

is equivalent to the statement

for (j = 2; j <= 80; j += 5)

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Examples

I Vary the control variable from 1 to 100 in increments of 1.

for (unsigned int i = 1; i <= 100; ++i)

I Vary the control variable from 100 to 1 in increments of -1 (i.e.,
decrements of 1).

for (unsigned int i = 100; i >= 1; --i)

I Vary the control variable from 7 to 77 in increments of 7.

for (unsigned int i = 7; i <= 77; i += 7)

I Vary the control variable from 20 to 2 in increments of -2.

for (unsigned int i = 20; i >= 2; i -= 2)

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Examples

I Vary the control variable over the following sequence of values: 2, 5, 8,
11, 14, 17.

for (unsigned int j = 2; j <= 17; j += 3)

I Vary the control variable over the following sequence of values: 44, 33,
22, 11, 0.

for (unsigned int j = 44; j >= 0; j -= 11)

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

What does this program do?

1 #include <s t d i o . h>
2 int main (void)
3 {
4 unsigned int sum = 0 ; // initialize sum

5 for (unsigned int number = 2 ; number <= 100 ; number += 2) {
6 sum += number ; // add number to sum

7 }
8 p r i n t f ("Sum is %u\n" , sum) ;
9 }

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Computing compound interest

A person invests $1000.00 in a savings account yielding 5% interest.
Assuming that all interest is left on deposit in the account, calculate and
print the amount of money in the account at the end of each year for 10
years. Use the following formula for determining these amounts:

a = p(1+ r)n

where

I p is the original amount invested (i.e., the principal),

I r is the annual interest rate (for example, .05 for 5%),

I n is the number of years, and

I a is the amount on deposit at the end of the nth year.

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Computing compound interest

1 /* File name: compound_interest.c
2 Program to compute compound interest using the formula a = p*(1+r)^n.
3 To compile and link:
4 gcc compound_interest.c -o compound_interest
5 To compile and link on Linux/UNIX , use -lm to link
6 the math library to the program:
7 gcc compound_interest.c -lm -o compound_interest
8 To run: ./ compound_interest
9 */
10 #include <stdio.h>
11 #include <math.h> // contains implementation of the pow() function
12

13 int main(void)
14 {
15 double principal = 1000.0; // starting principal
16 double rate = .05; // annual interest rate
17 // output table column heads
18 printf("%4s%21s\n", "Year", "Amount on deposit");
19 // calculate amount on deposit for each of ten years
20 for (unsigned int year = 1; year <= 10; ++year) {
21 // calculate new amount for specified year
22 double amount = principal * pow (1.0 + rate , year);
23 // output one table row
24 printf("%4u%21.2f\n", year , amount);
25 }
26 }

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Computing compound interest

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Float vs. Double

I Type double is a �oating-point type like float.

I But a variable of type double can store
I a value of much greater magnitude
I with greater precision

than float.

I Variables of type double occupy more memory than those of type float.

I For all but the most memory-intensive applications, professional
programmers generally prefer double to float.

Avoid using float and double for monetary amounts! See page 155.

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Formatting Numeric Output

I What does the conversion speci�er %21.2f do?
I 21 denotes the �eld width in which the value will be printed.
I 2 speci�es the precision (i.e., the number of decimal positions).

I If the number of characters displayed is less than the �eld width, then the
value will automatically be right justi�ed with leading spaces in the �eld.

I Useful for aligning decimal points vertically.

I To left justify a value in a �eld, place a - (minus sign) between the % and
the �eld width. For example, %-5.2f or %-6d or %-8s.

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Counting grades using the switch statement

1 /* File name: grade_counts.c
2 Program for counting letter grades with the 'switch ' statement.
3 To compile and link:
4 gcc grade_counts.c -o grade_counts
5 To run: ./ grade_counts
6 */
7

8 #include <stdio.h>
9 int main(void)
10 {
11 unsigned int aCount = 0;
12 unsigned int bCount = 0;
13 unsigned int cCount = 0;
14 unsigned int dCount = 0;
15 unsigned int fCount = 0;
16

17 puts("Enter the letter grades.");
18 puts("Enter the end -of -file (EOF) sequence to end input.");
19 puts("In Ubuntu , EOF is indicated by pressing Ctrl -D.");
20 puts("In Windows , EOF is indicated by pressing Ctrl -Z and then pressing enter.");
21 int grade; // one grade
22

23 // loop until user types end -of -file key sequence
24 while ((grade = getchar ()) != EOF) {
25

26 // determine which grade was input
27 switch (grade) { // switch nested in while
28

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Counting grades using the switch statement

29 case 'A': // grade was uppercase A
30 case 'a': // or lowercase a
31 ++ aCount;
32 break; // necessary to exit switch
33

34 case 'B': // grade was uppercase B
35 case 'b': // or lowercase b
36 ++ bCount;
37 break;
38

39 case 'C': // grade was uppercase C
40 case 'c': // or lowercase c
41 ++ cCount;
42 break;
43

44 case 'D': // grade was uppercase D
45 case 'd': // or lowercase d
46 ++ dCount;
47 break;
48

49 case 'F': // grade was uppercase F
50 case 'f': // or lowercase f
51 ++ fCount;
52 break;
53

54 case '\n': // ignore newlines ,
55 case '\t': // tabs ,
56 case ' ': // and spaces in input
57 break;

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Counting grades using the switch statement

58

59 default: // catch all other characters
60 printf("%s", "Incorrect letter grade entered.");
61 puts(" Enter a new grade.");
62 break; // optional; will exit switch anyway
63 }
64 } // end while
65

66 // output summary of results
67 puts("\nTotals for each letter grade are:");
68 printf("A: %u\n", aCount);
69 printf("B: %u\n", bCount);
70 printf("C: %u\n", cCount);
71 printf("D: %u\n", dCount);
72 printf("F: %u\n", fCount);
73 }

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Important Notes

I The getchar function from the standard input/output library reads and
returns as an int one character from the keyboard.

I Characters are normally stored in variables of type char.

I Characters can be stored in any integer data type because they're usually
represented as one-byte integers in the computer.

I Therefore, we can treat a character as either an integer or a

character, depending on its use.

I Many computers today use the ASCII (American Standard Code for
Information Interchange) character set. ASCII for lowercase letter 'a' is
the integer 97.

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Important Notes

I Characters can be read with scanf by using the conversion speci�er %c.

I Assignment expressions as a whole actually have a value. This value is
assigned to the variable on the left side of the =.

I The fact that assignment statements have values can be useful for setting
several variables to the same value, as in a = b = c = 0;.

I The break statement causes program control to continue with the
statement after the switch.

I The break statement prevents the cases in a switch statement from
running together.

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

The switch loop

switch statement �owchart

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

do ...while

1 #include <s t d i o . h>
2
3 int main (void)
4 {
5 unsigned int coun t e r = 1 ; // initialize counter

6 do {
7 p r i n t f ("%u " , c oun t e r) ;
8 } while (++coun t e r <= 10) ; //semicolon is required here

9 }

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

The break statement

I The break statement, when executed in a while, for, do . . . while or
switch statement, causes immediate exit from that statement.

I Program execution continues with the next statement.

unsigned int x ; // declared here so it can be used after loop

for (x = 1 ; x <= 10 ; ++x) {
if (x == 5) {

break ; // break loop only if x is 5

}
p r i n t f ("%u " , x) ;

}
p r i n t f ("\nBroke out of loop at x == %u\n" , x) ;

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

The continue statement

I The continue statement, when executed in a while, for or do . . . while
statement, skips the remaining statements in the body and performs the
next loop iteration.

I In while and do . . . while, the loop-continuation test is evaluated
immediately after the continue statement is executed.

I In a for, the increment expression is executed, then the loop-continuation
test is evaluated.

for (unsigned int x = 1 ; x <= 10 ; ++x) {
if (x == 5) {

continue ; // skip remaining code in loop body

}
p r i n t f ("%u " , x) ;

}

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Logical Operators

1. Logical AND is represented by &&.

2. Logical OR is represented by ||.

3. Logical NEGATION is represented by !.

Exp1 Exp2 Exp1 && Exp2 Exp1 || Exp2

0 0 0 0
0 nonzero 0 1

nonzero 0 0 1
nonzero nonzero 1 1

Precedence of AND is higher than OR.

Exp !Exp

0 1
nonzero 0

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Short-circuit evaluation of AND and OR

I An expression containing && or || operators is evaluated only until truth
or falsehood is known.

I Evaluation of the condition

gender == 1 && age >= 65

will stop if gender is not equal to 1 since the whole expression will then be
guaranteed to be false.

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Precedences of operators

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Assignment vs. Equality

I Suppose we intend to write

if (payCode == 4) {
p r i n t f ("%s" , "You get a bonus!") ;

}

but we accidentally write

if (payCode = 4) {
p r i n t f ("%s" , "You get a bonus!") ;

}

I The following things will happen:
1. payCode will be assigned a value of 4,
2. the expression payCode = 4 will return the value 4 irrespective of the

actual value of payCode, and
3. the command if(4) will be true.

I Tip: develop habit of the form 4 == payCode since accidentally writing it
as 4 = payCode will give a compilation error.

The for loop switch do ...while break and continue Logical Operators Assignment vs. Equality

Assignment vs. Equality

I Suppose you want to assign a value to a variable with a simple statement
such as

x = 1;

but instead write

x == 1;

I Variable x will retain it's original value. It will not be assigned the value 1.
Depending upon value of x, the expression will either return 0 or 1.

I Tip: �nd every instance of = in your code and check if it has been used
correctly.

	The for loop
	switch
	do …while
	break and continue
	Logical Operators
	Assignment vs. Equality

