
CC-112 Programming Fundamentals

Random Number Generation

Nazar Khan

Department of Computer Science

University of the Punjab



Random Number Generation

The rand() function

I Function rand generates an integer between 0 and RAND_MAX which is

de�ned by the C standard to be at least 32767.

I Values produced by rand can be scaled and shifted to produce values in a

speci�c range.

I The general equation for scaling and shifting a random number is

n = a + rand() % b;

where a is the shifting value (i.e., the �rst number in the desired range of

consecutive integers) and b is the scaling factor (i.e,. the width of the

desired range of consecutive integers).



Random Number Generation

The srand() function

I To randomize a program, use the C standard library function srand.

I The srand function seeds the random number generator.

I An srand call is ordinarily inserted in a program only after it has been

thoroughly debugged.

I While debugging, it's better to omit srand.

I This ensures repeatability, which is essential to proving that corrections to

a random number generation program work properly.

I The function prototypes for rand and srand are contained in

<stdlib.h>.

I To randomize without the need for entering a seed each time, we use

srand(time(NULL)).



Random Number Generation

Example: A Game of Chance

Rules of �Craps�

A player rolls two dice. Each die has six faces. These faces contain 1,

2, 3, 4, 5, and 6 spots. After the dice have come to rest, the sum of

the spots on the two upward faces is calculated. If the sum is 7 or 11

on the �rst throw, the player wins. If the sum is 2, 3, or 12 on the

�rst throw (called "craps�), the player loses (i.e., the "house� wins).

If the sum is 4, 5, 6, 8, 9, or 10 on the �rst throw, then that sum

becomes the player's "point.� To win, you must continue rolling the

dice until you "make your point.� The player loses by rolling a 7

before making the point.



Random Number Generation

Simulation of �Craps�

1 // Simulating the game of craps.
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <time.h> // contains prototype for function time
5

6 // enumeration constants represent game status
7 enum Status { CONTINUE , WON , LOST };
8 int rollDice(void); // function prototype
9

10 int main(void)
11 {
12 // randomize random number generator using current time
13 srand(time(NULL ));
14

15 int myPoint; // player must make this point to win
16 enum Status gameStatus; // can contain CONTINUE , WON , or LOST
17 int sum = rollDice (); // first roll of the dice
18

19 // determine game status based on sum of dice
20 switch(sum) {
21

22 // win on first roll
23 case 7: // 7 is a winner
24 case 11: // 11 is a winner
25 gameStatus = WON;
26 break;
27

28



Random Number Generation

Simulation of �Craps�

29 // lose on first roll
30 case 2: // 2 is a loser
31 case 3: // 3 is a loser
32 case 12: // 12 is a loser
33 gameStatus = LOST;
34 break;
35

36 // remember point
37 default:
38 gameStatus = CONTINUE; // player should keep rolling
39 myPoint = sum; // remember the point
40 printf("Point is %d\n", myPoint );
41 break; // optional
42 }
43

44 // while game not complete
45 while (CONTINUE == gameStatus) { // player should keep rolling
46 sum = rollDice (); // roll dice again
47 // determine game status
48 if (sum == myPoint) { // win by making point
49 gameStatus = WON;
50 }
51 else {
52 if (7 == sum) { // lose by rolling 7
53 gameStatus = LOST;
54 }
55 }
56 }
57



Random Number Generation

Simulation of �Craps�

58 // display won or lost message
59 if (WON == gameStatus) { // did player win?
60 puts("Player wins");
61 }
62 else { // player lost
63 puts("Player loses");
64 }
65 }
66

67 // roll dice , calculate sum and display results
68 int rollDice(void)
69 {
70 int die1 = 1 + (rand() % 6); // pick random die1 value
71 int die2 = 1 + (rand() % 6); // pick random die2 value
72 // display results of this roll
73 printf("Player rolled %d + %d = %d\n", die1 , die2 , die1 + die2);
74 return die1 + die2; // return sum of dice
75 }


	Random Number Generation

