
CC-112 Programming Fundamentals

Storage Classes and Scope Rules

Nazar Khan

Department of Computer Science

University of the Punjab



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Example of scoping rules

1 // Scoping.
2 #include <stdio.h>
3

4 void useLocal(void); // function prototype
5 void useStaticLocal(void); // function prototype
6 void useGlobal(void); // function prototype
7 int x = 1; // global variable
8

9 int main(void)
10 {
11 int x = 5; // local variable to main
12 printf("local x in outer scope of main is %d\n", x);
13 { // start new scope
14 int x = 7; // local variable to new scope
15 printf("local x in inner scope of main is %d\n", x);
16 } // end new scope
17 printf("local x in outer scope of main is %d\n", x);
18 useLocal (); // useLocal has automatic local x
19 useStaticLocal (); // useStaticLocal has static local x
20 useGlobal (); // useGlobal uses global x
21 useLocal (); // useLocal reinitializes automatic local x
22 useStaticLocal (); // static local x retains its prior value
23 useGlobal (); // global x also retains its value
24 printf("\nlocal x in main is %d\n", x);
25 }
26

27 // useLocal reinitializes local variable x during each call
28 void useLocal(void)



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Example of scoping rules

29 {
30 int x = 25; // initialized each time useLocal is called
31 printf("\nlocal x in useLocal is %d after entering useLocal\n", x);
32 ++x;
33 printf("local x in useLocal is %d before exiting useLocal\n", x);
34 }
35

36 // useStaticLocal initializes static local variable x only the first time
37 // the function is called; value of x is saved between calls to this
38 // function
39 void useStaticLocal(void)
40 {
41 // initialized once
42 static int x = 50;
43 printf("\nlocal static x is %d on entering useStaticLocal\n", x);
44 ++x;
45 printf("local static x is %d on exiting useStaticLocal\n", x);
46 }
47 // function useGlobal modifies global variable x during each call
48 void useGlobal(void)
49 {
50 printf("\nglobal x is %d on entering useGlobal\n", x);
51 x *= 10;
52 printf("global x is %d on exiting useGlobal\n", x);
53 }



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Example of scoping rules

Produces the following output

local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 51 on entering useStaticLocal
local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Compiling multiple source �les

I Assume main() function is in main.c and all functions are in
functions.c.

I You can compile and link them both into a single executable �le via

gcc main.c functions.c -o myprogram

I You can also compile them separately into object �les without linking via

gcc main.c -o main.o -c

gcc functions.c -o functions.o -c

The -c �ag tells the compiler to stop after the compilation phase, without
linking.

I You can link pre-compiled object �les via

gcc -o myprogram main.o functions.o

I This way you don't have to recompile every single source �le every time
you change only one of them.



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Storage Classes

I Each identi�er in a program has the attributes

1. storage class
2. storage duration � when does an identi�er exist in memory?
3. scope � where can an identi�er be referenced in a program?
4. linkage � which other C �les can reference an identi�er?

I C provides four storage classes indicated by the storage class speci�ers:

1. auto,
2. register,
3. extern, and
4. static.

Duration Scope Linkage

auto Temporary Local Internal
register Temporary Local Internal

static Permanent Local Internal
extern Permanent Global External



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Storage Classes

I Variables with auto storage duration are created when the block in which
they're de�ned is entered.

I They exist while the block is active and are destroyed when the block is
exited.

I A function's local variables normally have auto storage duration.

I Keywords extern and static are used to declare identi�ers with static

storage duration.

I extern and static variables are allocated and initialized once, before the
program begins execution.

I There are two types of identi�ers with static storage duration:

1. external identi�ers (such as global variables and function names), and
2. local variables declared with the storage-class speci�er static.



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Global vs Local Static

I Global variables are created by placing variable de�nitions outside any
function de�nition.

I Global variables retain their values throughout the execution of the
program.

I Local static variables retain their value between calls to the function in
which they're de�ned.

I All numeric variables of static storage duration are initialized to zero if
you do not explicitly initialize them.



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Scope Rules

I An identi�er's scope is where the identi�er can be referenced in a program.

I An identi�er can have

1. function scope,
2. �le scope,
3. block scope, or
4. function-prototype scope.



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Function scope

I Labels are the only identi�ers with function scope.

I Labels can be used anywhere in the function in which they appear but
cannot be referenced outside the function body.

Avoid labels and goto statement. It goes against the principles of
structured programming.



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

File scope

I An identi�er declared outside any function has �le scope.

I Such an identi�er is �known� in all functions from the point at which it's
declared until the end of the �le.



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Block scope

I Identi�ers de�ned inside a block have block scope.

I Block scope ends at the terminating right brace (}) of the block.

I Local variables de�ned at the beginning of a function have block scope.

I Function parameters are considered local variables by the function and
also have block scope.

I Any block may contain variable de�nitions. When blocks are nested, and
an identi�er in an outer block has the same name as an identi�er in an
inner block, the identi�er in the outer block is �hidden� until the inner
block terminates.



Example: Scoping rules Example: Compiling multiple �les Storage Classes Scope Rules

Function-prototype scope

I The only identi�ers with function-prototype scope are those used in the
parameter list of a function prototype.

I Identi�ers used in a function prototype can be reused elsewhere in the
program without ambiguity.


	Example: Scoping rules
	Example: Compiling multiple files
	Storage Classes
	Scope Rules

