
Lecture No.01
Arrays and Lists

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

Data Structures

 Prepares the students for (and is a
prerequisite for) the more advanced
material students will encounter in later
courses.

 Cover well-known data structures such as
dynamic arrays, linked lists, stacks,
queues, tree and graphs.

 Implement data structures in C++

Data Structures

 Prepares the students for (and is a
prerequisite for) the more advanced
material students will encounter in later
courses.

 Cover well-known data structures such as
dynamic arrays, linked lists, stacks,
queues, tree and graphs.

 Implement data structures in C++

Data Structures

 Prepares the students for (and is a
prerequisite for) the more advanced
material students will encounter in later
courses.

 Cover well-known data structures such as
dynamic arrays, linked lists, stacks,
queues, tree and graphs.

 Implement data structures in C++

Grading

 Quizzes 15%
 Assignments 10%
 Mid-Term Exam 35%
 Final 40%

Course webpage:
http://faculty.pucit.edu.pk/nazarkhan/teaching/CC213/CC213.html

http://faculty.pucit.edu.pk/nazarkhan/teaching/CC213/

Need for Data Structures

 Data structures organize data  more
efficient programs.

 More powerful computers  more
complex applications.

 More complex applications demand more
calculations.

Need for Data Structures

 Data structures organize data  more
efficient programs.

 More powerful computers  more
complex applications.

 More complex applications demand more
calculations.

Need for Data Structures

 Data structures organize data  more
efficient programs.

 More powerful computers  more
complex applications.

 More complex applications demand more
calculations.

Organizing Data

 Any organization for a collection of records
that can be searched, processed in any
order, or modified.

 The choice of data structure and algorithm
can make the difference between a
program running in a few seconds or
many days.

Organizing Data

 Any organization for a collection of records
that can be searched, processed in any
order, or modified.

 The choice of data structure and algorithm
can make the difference between a
program running in a few seconds or
many days.

Efficiency

 A solution is said to be efficient if it solves
the problem within its resource
constraints.
– Space

– Time

 The cost of a solution is the amount of
resources that the solution consumes.

Efficiency

 A solution is said to be efficient if it solves
the problem within its resource
constraints.
 Space
 Time

 The cost of a solution is the amount of
resources that the solution consumes.

Selecting a Data Structure

Select a data structure as follows:
1. Analyze the problem to determine the

resource constraints a solution must
meet.

2. Determine the basic operations that must
be supported. Quantify the resource
constraints for each operation.

3. Select the data structure that best meets
these requirements.

Selecting a Data Structure

Select a data structure as follows:
1. Analyze the problem to determine the

resource constraints a solution must
meet.

2. Determine the basic operations that must
be supported. Quantify the resource
constraints for each operation.

3. Select the data structure that best meets
these requirements.

Selecting a Data Structure

Select a data structure as follows:
1. Analyze the problem to determine the

resource constraints a solution must
meet.

2. Determine the basic operations that must
be supported. Quantify the resource
constraints for each operation.

3. Select the data structure that best meets
these requirements.

Some Questions to Ask

• Are all data inserted into the data structure
at the beginning, or are insertions
interspersed with other operations?

• Can data be deleted?

• Are all data processed in some well-
defined order, or is random access
allowed?

Some Questions to Ask

• Are all data inserted into the data structure
at the beginning, or are insertions
interspersed with other operations?

• Can data be deleted?

• Are all data processed in some well-
defined order, or is random access
allowed?

Some Questions to Ask

• Are all data inserted into the data structure
at the beginning, or are insertions
interspersed with other operations?

• Can data be deleted?

• Are all data processed in some well-
defined order, or is random access
allowed?

Data Structure Philosophy

 Each data structure has costs and
benefits.

 Rarely is one data structure better than
another in all situations.

 A data structure requires:
– space for each data item it stores,

– time to perform each basic operation,

– programming effort.

Data Structure Philosophy

 Each data structure has costs and
benefits.

 Rarely is one data structure better than
another in all situations.

 A data structure requires:
– space for each data item it stores,

– time to perform each basic operation,

– programming effort.

Data Structure Philosophy

 Each data structure has costs and
benefits.

 Rarely is one data structure better than
another in all situations.

 A data structure requires:
– space for each data item it stores,

– time to perform each basic operation,

– programming effort.

Goals of this Course
1. Reinforce the concept that costs and benefits

exist for every data structure.

2. Learn the commonly used data structures.
– These form a programmer's basic data structure

“toolkit.”

3. Understand how to measure the cost of a data
structure or program.
– These techniques also allow you to judge the merits

of new data structures that you or others might
invent.

Goals of this Course
1. Reinforce the concept that costs and benefits

exist for every data structure.

2. Learn the commonly used data structures.
– These form a programmer's basic data structure

“toolkit”.

3. Understand how to measure the cost of a data
structure or program.
– These techniques also allow you to judge the merits

of new data structures that you or others might
invent.

Goals of this Course
1. Reinforce the concept that costs and benefits

exist for every data structure.

2. Learn the commonly used data structures.
– These form a programmer's basic data structure

“toolkit”.

3. Understand how to measure the cost of a data
structure or program.
– These techniques also allow you to judge the merits

of new data structures that you or others might
invent.

Arrays

 Elementary data structure that exists as built-in
in most programming languages.

main(int argc, char** argv)
{

int x[6];
int j;
for(j=0; j < 6; j++)

x[j] = 2*j;
}

Arrays

 Array declaration: int x[6];
 An array is collection of cells of the same type.
 The collection has the name ‘x’.
 The cells are numbered with consecutive

integers.
 To access a cell, use the array name and an

index:
 x[0], x[1], x[2], x[3], x[4], x[5]

Array Layout

x[1]

x[2]

x[3]

x[4]

x[5]

x[0]

Array cells are
contiguous in
computer memory

The memory can be
thought of as an
array

What is Array Name?

 ‘x’ is an array name but there is no variable x. ‘x’ is not an lvalue.

 For example, if we have the code

int a, b;

then we can write

b = 2;
a = b;
a = 5;

But we cannot write

2 = a;

What is Array Name?

 ‘x’ is an array name but there is no variable x. ‘x’ is not an lvalue.

 For example, if we have the code

int a, b;

then we can write

b = 2;
a = b;
a = 5;

But we cannot write

2 = a;

What is Array Name?

 ‘x’ is an array name but there is no variable x. ‘x’ is not an lvalue.

 For example, if we have the code

int a, b;

then we can write

b = 2;
a = b;
a = 5;

But we cannot write

2 = a;

Array Name

 ‘x’ is not an lvalue

int x[6];
int n;

x[0] = 5;
x[1] = 2;

x = 3; // not allowed
x = a + b; // not allowed
x = &n; // not allowed

Array Name

 ‘x’ is not an lvalue

int x[6];
int n;

x[0] = 5;
x[1] = 2;

x = 3; // not allowed
x = a + b; // not allowed
x = &n; // not allowed

Dynamic Arrays

 You would like to use an array data structure
but you do not know the size of the array at
compile time.

 You find out when the program executes that
you need an integer array of size n=20.

 Allocate an array using the new operator:

int* y = new int[20]; // or int* y = new int[n]
y[0] = 10;
y[1] = 15; // use is the same

Dynamic Arrays

 You would like to use an array data structure
but you do not know the size of the array at
compile time.

 You find out when the program executes that
you need an integer array of size n=20.

 Allocate an array using the new operator:

int* y = new int[20]; // or int* y = new int[n]
y[0] = 10;
y[1] = 15; // use is the same

Dynamic Arrays

 You would like to use an array data structure
but you do not know the size of the array at
compile time.

 You find out when the program executes that
you need an integer array of size n=20.

 Allocate an array using the new operator:

int* y = new int[20]; // or int* y = new int[n]
y[0] = 10;
y[1] = 15; // use is the same

Dynamic Arrays

 ‘y’ is a lvalue; it is a pointer that holds the
address of 20 consecutive cells in memory.

 It can be assigned a value. The new operator
returns as address that is stored in y.

 We can write:

y = &x[0];
y = x; // x can appear on the right
// y gets the address of the
// first cell of the x array

Dynamic Arrays

 ‘y’ is a lvalue; it is a pointer that holds the
address of 20 consecutive cells in memory.

 It can be assigned a value. The new operator
returns as address that is stored in y.

 We can write:

y = &x[0];
y = x; // x can appear on the right
// y gets the address of the
// first cell of the x array

Dynamic Arrays

 ‘y’ is a lvalue; it is a pointer that holds the
address of 20 consecutive cells in memory.

 It can be assigned a value. The new operator
returns as address that is stored in y.

 We can write:

y = &x[0];
y = x; // x can appear on the right
// y gets the address of the
// first cell of the x array

Dynamic Arrays

 We must free the memory we got using the
new operator once we are done with the y
array.

delete[] y;

 We would not do this to the x array because we
did not use new to create it.

The LIST Data Structure

 The List is among the most generic of data
structures.

 Real life:

a. shopping list,
b. groceries list,
c. list of people to invite to dinner
d. List of presents to get

Lists

 A list is collection of items that are all of the
same type (grocery items, integers, names)

 The items, or elements of the list, are stored in
some particular order

 It is possible to insert new elements into
various positions in the list and remove any
element of the list

Lists

 A list is collection of items that are all of the
same type (grocery items, integers, names)

 The items, or elements of the list, are stored in
some particular order

 It is possible to insert new elements into
various positions in the list and remove any
element of the list

Lists

 A list is collection of items that are all of the
same type (grocery items, integers, names)

 The items, or elements of the list, are stored in
some particular order

 It is possible to insert new elements into
various positions in the list and remove any
element of the list

Lists

 List is a set of elements in a linear order.
For example, data values a1, a2, a3, a4 can be
arranged in a list:

(a3, a1, a2, a4)

In this list, a3, is the first element, a1 is the
second element, and so on

 The order is important here; this is not just a
random collection of elements, it is an ordered
collection

Lists

 List is a set of elements in a linear order.
For example, data values a1, a2, a3, a4 can be
arranged in a list:

(a3, a1, a2, a4)

In this list, a3, is the first element, a1 is the
second element, and so on

 The order is important here; this is not just a
random collection of elements, it is an ordered
collection

List Operations

Useful operations
• createList(): create a new list (presumably empty)
• copy(): set one list to be a copy of another
• clear(); clear a list (remove all elments)
• insert(X, ?): Insert element X at a particular position

 in the list
• remove(?): Remove element at some position in

 the list
• get(?): Get element at a given position
• update(X, ?): replace the element at a given position

 with X
• find(X): determine if the element X is in the list
• length(): return the length of the list.

List Operations

 We need to decide what is meant by “particular
position”; we have used “?” for this.

 There are two possibilities:

1. Use the actual index of element: insert after element
3, get element number 6. This approach is taken by
arrays

2. Use a “current” marker or pointer to refer to a
particular position in the list.

List Operations

 We need to decide what is meant by “particular
position”; we have used “?” for this.

 There are two possibilities:

1. Use the actual index of element: insert after element
3, get element number 6. This approach is taken by
arrays

2. Use a “current” marker or pointer to refer to a
particular position in the list.

List Operations

 If we use the “current” marker, the following
four methods would be useful:

 start(): moves to “current” pointer to the very first
 element.

 tail(): moves to “current” pointer to the very last
element.

 next(): move the current position forward one
element

 back(): move the current position backward one
element

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

