
Lecture No.02
List Implementation via Array

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU



Implementing Lists

 We have designed the interface for the List; we 
now must consider how to implement that 
interface.



Implementing Lists

 We have designed the interface for the List; we 
now must consider how to implement that 
interface.

 Implementing Lists using an array: for example, 
the list of integers (2, 6, 8, 7, 1) could be 
represented as:

A 6 8 7 1
1 2 3 4 5

2
current

3

siz
e5



List Implementation

 add(9); current position is 3. The new list would thus 
be: (2, 6, 8, 9, 7, 1)

 We will need to shift everything to the right of 8 one 
place to the right to make place for the new element ‘9’.

current

3

siz
e5

step 1: A 6 8 7 1
1 2 3 4 5

2
6

current

4

siz
e6

step 2: A 6 8 7 1
1 2 3 4 5

2
6

9

notice: current points
to new element



Implementing Lists

 next():

current

4

siz
e6

A 6 8 7 1
1 2 3 4 5

2
6

9
5



Implementing Lists

 There are special cases for positioning the 
current pointer: 

a. past the last array cell 
b. before the first cell

 We will have to worry about these when we 
write the actual code.



Implementing Lists

 remove(): removes the element at the current
     index

current

5

siz
e6

A 6 8 1
1 2 3 4 5

2
6

9

5

Step 1:

current

5

siz
e5

A 6 8 1
1 2 3 4 5

2 9Step 2:



Implementing Lists

 remove(): removes the element at the current
     index

 We fill the blank spot left by the removal of 7 by 

shifting the values to the right of position 5 over 
to the left one space.

current

5

siz
e5

A 6 8 1
1 2 3 4 5

2 9Step 2:

current

5

siz
e6

A 6 8 1
1 2 3 4 5

2
6

9

5

Step 1:



Implementing Lists
find(X): traverse the array until X is located.

int find(int X)
{
int j;
for(j=1; j < size+1; j++ )
    if( A[j] == X ) break;
    
if( j < size+1 ) { // found X
    current = j;        // current points to where X found
    return 1;   // 1 for true
}
return 0;  // 0 (false) indicates not found
}



Implementing Lists

 Other operations:

get()  return A[current];
update(X)  A[current] = X;
length()   return size;
back()  current--;
start()  current = 1;
end()  current = size;



Analysis of Array Lists

 add
 we have to move every element to the right of  

current to make space for the new element.
 Worst-case is when we insert at the beginning; we 

have to move every element right one place.
 Average-case: on average we may have to move 

half of the elements



Analysis of Array Lists

 remove
 Worst-case: remove at the beginning, must shift all 

remaining elements to the left.
 Average-case: expect to move half of the elements.

 find
 Worst-case: may have to search the entire array
 Average-case: search at most half the array.

 Other operations are one-step.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

