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Implementing Lists

 We have designed the interface for the List; we 
now must consider how to implement that 
interface.



Implementing Lists

 We have designed the interface for the List; we 
now must consider how to implement that 
interface.

 Implementing Lists using an array: for example, 
the list of integers (2, 6, 8, 7, 1) could be 
represented as:

A 6 8 7 1
1 2 3 4 5
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List Implementation

 add(9); current position is 3. The new list would thus 
be: (2, 6, 8, 9, 7, 1)

 We will need to shift everything to the right of 8 one 
place to the right to make place for the new element ‘9’.
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step 1: A 6 8 7 1
1 2 3 4 5
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step 2: A 6 8 7 1
1 2 3 4 5
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notice: current points
to new element



Implementing Lists

 next():
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Implementing Lists

 There are special cases for positioning the 
current pointer: 

a. past the last array cell 
b. before the first cell

 We will have to worry about these when we 
write the actual code.



Implementing Lists

 remove(): removes the element at the current
     index
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Implementing Lists

 remove(): removes the element at the current
     index

 We fill the blank spot left by the removal of 7 by 

shifting the values to the right of position 5 over 
to the left one space.
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Implementing Lists
find(X): traverse the array until X is located.

int find(int X)
{
int j;
for(j=1; j < size+1; j++ )
    if( A[j] == X ) break;
    
if( j < size+1 ) { // found X
    current = j;        // current points to where X found
    return 1;   // 1 for true
}
return 0;  // 0 (false) indicates not found
}



Implementing Lists

 Other operations:

get()  return A[current];
update(X)  A[current] = X;
length()   return size;
back()  current--;
start()  current = 1;
end()  current = size;



Analysis of Array Lists

 add
 we have to move every element to the right of  

current to make space for the new element.
 Worst-case is when we insert at the beginning; we 

have to move every element right one place.
 Average-case: on average we may have to move 

half of the elements



Analysis of Array Lists

 remove
 Worst-case: remove at the beginning, must shift all 

remaining elements to the left.
 Average-case: expect to move half of the elements.

 find
 Worst-case: may have to search the entire array
 Average-case: search at most half the array.

 Other operations are one-step.
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