
Lecture No.02
List Implementation via Array

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

Implementing Lists

 We have designed the interface for the List; we
now must consider how to implement that
interface.

Implementing Lists

 We have designed the interface for the List; we
now must consider how to implement that
interface.

 Implementing Lists using an array: for example,
the list of integers (2, 6, 8, 7, 1) could be
represented as:

A 6 8 7 1
1 2 3 4 5

2
current

3

siz
e5

List Implementation

 add(9); current position is 3. The new list would thus
be: (2, 6, 8, 9, 7, 1)

 We will need to shift everything to the right of 8 one
place to the right to make place for the new element ‘9’.

current

3

siz
e5

step 1: A 6 8 7 1
1 2 3 4 5

2
6

current

4

siz
e6

step 2: A 6 8 7 1
1 2 3 4 5

2
6

9

notice: current points
to new element

Implementing Lists

 next():

current

4

siz
e6

A 6 8 7 1
1 2 3 4 5

2
6

9
5

Implementing Lists

 There are special cases for positioning the
current pointer:

a. past the last array cell
b. before the first cell

 We will have to worry about these when we
write the actual code.

Implementing Lists

 remove(): removes the element at the current
 index

current

5

siz
e6

A 6 8 1
1 2 3 4 5

2
6

9

5

Step 1:

current

5

siz
e5

A 6 8 1
1 2 3 4 5

2 9Step 2:

Implementing Lists

 remove(): removes the element at the current
 index

 We fill the blank spot left by the removal of 7 by

shifting the values to the right of position 5 over
to the left one space.

current

5

siz
e5

A 6 8 1
1 2 3 4 5

2 9Step 2:

current

5

siz
e6

A 6 8 1
1 2 3 4 5

2
6

9

5

Step 1:

Implementing Lists
find(X): traverse the array until X is located.

int find(int X)
{
int j;
for(j=1; j < size+1; j++)
 if(A[j] == X) break;

if(j < size+1) { // found X
 current = j; // current points to where X found
 return 1; // 1 for true
}
return 0; // 0 (false) indicates not found
}

Implementing Lists

 Other operations:

get()  return A[current];
update(X)  A[current] = X;
length()  return size;
back()  current--;
start()  current = 1;
end()  current = size;

Analysis of Array Lists

 add
 we have to move every element to the right of

current to make space for the new element.
 Worst-case is when we insert at the beginning; we

have to move every element right one place.
 Average-case: on average we may have to move

half of the elements

Analysis of Array Lists

 remove
 Worst-case: remove at the beginning, must shift all

remaining elements to the left.
 Average-case: expect to move half of the elements.

 find
 Worst-case: may have to search the entire array
 Average-case: search at most half the array.

 Other operations are one-step.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

