
Lecture No.04
Doubly Linked Lists and

Circular Linked Lists

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

AL 2

Doubly-linked List
 Moving forward in a singly-linked list is easy;

moving backwards is not so easy.

AL 3

Doubly-linked List
 Moving forward in a singly-linked list is easy;

moving backwards is not so easy.
 To move back one node, we have to start at the

head of the singly-linked list and move forward
until the node before the current.

AL 4

Doubly-linked List
 Moving forward in a singly-linked list is easy;

moving backwards is not so easy.
 To move back one node, we have to start at the

head of the singly-linked list and move forward
until the node before the current.

 To avoid this we can use two pointers in a
node: one to point to next node and another to
point to the previous node:

element nextprev

AL 5





Doubly-Linked List Node
class Node {
public:

int get() { return object; };
void set(int object) { this->object = object; };

Node* getNext() { return nextNode; };
void setNext(Node* nextNode)

 { this->nextNode = nextNode; };
Node* getPrev() { return prevNode; };
void setPrev(Node* prevNode)

 { this->prevNode = prevNode; };
private:

int object;
Node* nextNode;
Node* prevNode;

};

AL 6

Doubly-linked List

 Need to be more careful when adding or
removing a node.

 Consider add: the order in which pointers are
reorganized is important:

size=52 6 8 7 1head

current

AL 7

Doubly-linked List

1. newNode->setNext(current->getNext());

size=52 6 8 7head

current

1

9newNode 1

AL 8

Doubly-linked List

1. newNode->setNext(current->getNext());
2. newNode->setprev(current);

size=52 6 8 7head

current

1

9newNode 1

2

AL 9

Doubly-linked List

1. newNode->setNext(current->getNext());
2. newNode->setprev(current);
3. (current->getNext())->setPrev(newNode);

size=52 6 8 7head

current

1

9newNode 1

2 3

AL 10

Doubly-linked List

1. newNode->setNext(current->getNext());
2. newNode->setprev(current);
3. (current->getNext())->setPrev(newNode);
4. current->setNext(newNode);

size=52 6 8 7head

current

1

9newNode 1

2 34

AL 11

Doubly-linked List
1. newNode->setNext(current->getNext());
2. newNode->setprev(current);
3. (current->getNext())->setPrev(newNode);
4. current->setNext(newNode);
5. current = newNode;
6. size++;

size=62 6 8 7head

current

1

9newNode 1

2 34

AL 12

Circularly-linked lists

 The next field in the last node in a singly-linked
list is set to NULL.

 Moving along a singly-linked list has to be done
in a watchful manner.

 Doubly-linked lists have two NULL pointers:
prev in the first node and next in the last node.

 A way around this potential hazard is to link the
last node with the first node in the list to create
a circularly-linked list.

AL 13

Circularly-linked lists

 The next field in the last node in a singly-linked
list is set to NULL.

 Moving along a singly-linked list has to be done
in a watchful manner.

 Doubly-linked lists have two NULL pointers:
prev in the first node and next in the last node.

 A way around this potential hazard is to link the
last node with the first node in the list to create
a circularly-linked list.

AL 14

Circularly-linked lists

 The next field in the last node in a singly-linked
list is set to NULL.

 Moving along a singly-linked list has to be done
in a watchful manner.

 Doubly-linked lists have two NULL pointers:
prev in the first node and next in the last node.

 A way around this potential hazard is to link the
last node with the first node in the list to create
a circularly-linked list.

AL 15

Circularly-linked lists

 The next field in the last node in a singly-linked
list is set to NULL.

 Moving along a singly-linked list has to be done
in a watchful manner.

 Doubly-linked lists have two NULL pointers:
prev in the first node and next in the last node.

 A way around this potential hazard is to link the
last node with the first node in the list to create
a circularly-linked list.

AL 16

Cicularly Linked List

 Two views of a circularly linked list:

2 6 8 7 1head

current

size=5

2

8

7

1

head

current

size=5

6

AL 17

Josephus Problem

 A case where circularly linked list comes in
handy is the solution of the Josephus Problem.

AL 18

Josephus Problem

 A case where circularly linked list comes in
handy is the solution of the Josephus Problem.

 Consider there are 10 persons. They would like
to choose a leader.

AL 19

Josephus Problem

 A case where circularly linked list comes in
handy is the solution of the Josephus Problem.

 Consider there are 10 persons. They would like
to choose a leader.

 The way they decide is that all 10 sit in a circle.

AL 20

Josephus Problem

 A case where circularly linked list comes in
handy is the solution of the Josephus Problem.

 Consider there are 10 persons. They would like
to choose a leader.

 The way they decide is that all 10 sit in a circle.
 They start a count with person 1 and go in

clockwise direction and skip 3. Person 4
reached is eliminated.

AL 21

Josephus Problem

 A case where circularly linked list comes in
handy is the solution of the Josephus Problem.

 Consider there are 10 persons. They would like
to choose a leader.

 The way they decide is that all 10 sit in a circle.
 They start a count with person 1 and go in

clockwise direction and skip 3. Person 4
reached is eliminated.

 The count starts with the fifth and the next
person to go is the fourth in count.

AL 22

Josephus Problem

 A case where circularly linked list comes in
handy is the solution of the Josephus Problem.

 Consider there are 10 persons. They would like
to choose a leader.

 The way they decide is that all 10 sit in a circle.
 They start a count with person 1 and go in

clockwise direction and skip 3. Person 4
reached is eliminated.

 The count starts with the fifth and the next
person to go is the fourth in count.

 Eventually, a single person remains.

AL 23

Josephus Problem

 A case where circularly linked list comes in
handy is the solution of the Josephus Problem.

 Consider there are 10 persons. They would like
to choose a leader.

 The way they decide is that all 10 sit in a circle.
 They start a count with person 1 and go in

clockwise direction and skip 3. Person 4
reached is eliminated.

 The count starts with the fifth and the next
person to go is the fourth in count.

 Eventually, a single person remains.

AL 24

Josephus Problem
 N=10, M=3

9
8

7

6

5
4

3

2

1

10

AL 25

Josephus Problem
 N=10, M=3

9
8

7

6

5
4

3

2

1

10

eliminated

AL 26

Josephus Problem
 N=10, M=3

9

8

7

6

5
4

3

2

1

10

eliminated

AL 27

Josephus Problem
 N=10, M=3

9

8

7

6

5
4

3

2

1

10

eliminated

AL 28

Josephus Problem
 N=10, M=3

9

8

7

6

5
4

3

2

1

10

eliminated

AL 29

Josephus Problem
 N=10, M=3

9

8

7

6

5
4

3

2

1

10

eliminated

AL 30

Josephus Problem
 N=10, M=3

9

8

7

6

5
4

3

2

1

10

eliminated

AL 31

Josephus Problem
 N=10, M=3

9

8

7

6

5
4

3

2

1

10

eliminated

AL 32

Josephus Problem
 N=10, M=3

9

8

7

6

5
4

3

2

1

10

eliminated

AL 33

Josephus Problem
 N=10, M=3

9

8

7

6

5
4

3

2

1

10

eliminated

AL 34



Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++) list.add(i);

list.start();
while(list.length() > 1) {
 for(i=1; i <= M; i++) list.next();

 cout << "remove: " << list.get() << endl;
 list.remove();

}
cout << "leader is: " << list.get() << endl;

}

AL 35



Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++) list.add(i);

list.start();
while(list.length() > 1) {
 for(i=1; i <= M; i++) list.next();

 cout << "remove: " << list.get() << endl;
 list.remove();

}
cout << "leader is: " << list.get() << endl;

}

AL 36



Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++) list.add(i);

list.start();
while(list.length() > 1) {
 for(i=1; i <= M; i++) list.next();

 cout << "remove: " << list.get() << endl;
 list.remove();

}
cout << "leader is: " << list.get() << endl;

}

AL 37



Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++) list.add(i);

list.start();
while(list.length() > 1) {
 for(i=1; i <= M; i++) list.next();

 cout << "remove: " << list.get() << endl;
 list.remove();

}
cout << "leader is: " << list.get() << endl;

}

AL 38



Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++) list.add(i);

list.start();
while(list.length() > 1) {
 for(i=1; i <= M; i++) list.next();

 cout << "remove: " << list.get() << endl;
 list.remove();

}
cout << "leader is: " << list.get() << endl;

}

AL 39



Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++) list.add(i);

list.start();
while(list.length() > 1) {
 for(i=1; i <= M; i++) list.next();

 cout << "remove: " << list.get() << endl;
 list.remove();

}
cout << "leader is: " << list.get() << endl;

}

AL 40



Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++) list.add(i);

list.start();
while(list.length() > 1) {
 for(i=1; i <= M; i++) list.next();

 cout << "remove: " << list.get() << endl;
 list.remove();

}
cout << "leader is: " << list.get() << endl;

}

AL 41



Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++) list.add(i);

list.start();
while(list.length() > 1) {
 for(i=1; i <= M; i++) list.next();

 cout << "remove: " << list.get() << endl;
 list.remove();

}
cout << "leader is: " << list.get() << endl;

}

AL 42



Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++) list.add(i);

list.start();
while(list.length() > 1) {
 for(i=1; i <= M; i++) list.next();

 cout << "remove: " << list.get() << endl;
 list.remove();

}
cout << "leader is: " << list.get() << endl;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

