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Doubly-linked List
 Moving forward in a singly-linked list is easy; 

moving backwards is not so easy.
 To move back one node, we have to start at the 

head of the singly-linked list and move forward 
until the node before the current.

 To avoid this we can use two pointers in a 
node: one to point to next node and another to 
point to the previous node:

element nextprev
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



Doubly-Linked List Node
class Node {
public:

int get() { return object; };
void set(int object) { this->object = object; };

Node* getNext() { return nextNode; };
void setNext(Node* nextNode) 

          { this->nextNode = nextNode; };
Node* getPrev() { return prevNode; };
void setPrev(Node* prevNode) 

          { this->prevNode = prevNode; };
private:

int object;
Node* nextNode;
Node* prevNode;

};
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Doubly-linked List 

 Need to be more careful when adding or 
removing a node.

 Consider add: the order in which pointers are 
reorganized is important:

size=52 6 8 7 1head

current
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Doubly-linked List 

1. newNode->setNext( current->getNext() );

size=52 6 8 7head
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Doubly-linked List 

1. newNode->setNext( current->getNext() );
2. newNode->setprev( current );

size=52 6 8 7head

current

1

9newNode 1
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Doubly-linked List 

1. newNode->setNext( current->getNext() );
2. newNode->setprev( current );
3. (current->getNext())->setPrev(newNode);

size=52 6 8 7head

current

1

9newNode 1

2 3
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Doubly-linked List 

1. newNode->setNext( current->getNext() );
2. newNode->setprev( current );
3. (current->getNext())->setPrev(newNode);
4. current->setNext( newNode );

size=52 6 8 7head

current

1

9newNode 1

2 34
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Doubly-linked List 
1. newNode->setNext( current->getNext() );
2. newNode->setprev( current );
3. (current->getNext())->setPrev(newNode);
4. current->setNext( newNode );
5. current = newNode;
6. size++;

size=62 6 8 7head

current

1

9newNode 1

2 34
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Circularly-linked lists

 The next field in the last node in a singly-linked 
list is set to NULL. 

 Moving along a singly-linked list has to be done 
in a watchful manner.

 Doubly-linked lists have two NULL pointers: 
prev in the first node and next in the last node.

 A way around this potential hazard is to link the 
last node with the first node in the list to create 
a circularly-linked list.
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 The next field in the last node in a singly-linked 
list is set to NULL. 

 Moving along a singly-linked list has to be done 
in a watchful manner.

 Doubly-linked lists have two NULL pointers: 
prev in the first node and next in the last node.
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Cicularly Linked List

 Two views of a circularly linked list:

2 6 8 7 1head

current

size=5

2

8

7

1

head

current

size=5

6
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Josephus Problem

 A case where circularly linked list comes in 
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

Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++ ) list.add(i);

list.start();
while( list.length() > 1 ) {
    for(i=1; i <= M; i++ ) list.next();

       cout << "remove: " << list.get() << endl;
       list.remove();

}
cout << "leader is: " << list.get() << endl;

}
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