
Lecture No.05
Stacks

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

Josephus Problem
#include "CList.cpp"
void main(int argc, char *argv[])
{

CList list;
int i, N=10, M=3;
for(i=1; i <= N; i++) list.add(i);

list.start();
while(list.length() > 1) {
 for(i=1; i <= M; i++) list.next();

 cout << "remove: " << list.get() << endl;
 list.remove();

}
cout << "leader is: " << list.get() << endl;

}

Josephus Problem
 Using a circularly-linked list made the solution

trivial.

Josephus Problem
 Using a circularly-linked list made the solution

trivial.
 The solution would have been more difficult if

an array had been used.

Josephus Problem
 Using a circularly-linked list made the solution

trivial.
 The solution would have been more difficult if

an array had been used.
 This illustrates the fact that the choice of the

appropriate data structures can significantly
simplify an algorithm. It can make the algorithm
much faster and efficient.

Josephus Problem
 Using a circularly-linked list made the solution

trivial.
 The solution would have been more difficult if

an array had been used.
 This illustrates the fact that the choice of the

appropriate data structures can significantly
simplify an algorithm. It can make the algorithm
much faster and efficient.

 Later we will see how some elegant data
structures lie at the heart of major algorithms.

Josephus Problem
 Using a circularly-linked list made the solution

trivial.
 The solution would have been more difficult if

an array had been used.
 This illustrates the fact that the choice of the

appropriate data structures can significantly
simplify an algorithm. It can make the algorithm
much faster and efficient.

 Later we will see how some elegant data
structures lie at the heart of major algorithms.

 An entire CS course “Design and Analysis of
Algorithms” is devoted to this topic.

Abstract Data Type

 We have looked at four different
implementations of the List data structures:
 Using arrays
 Singly linked list
 Doubly linked list
 Circularly linked list.

Abstract Data Type

 We have looked at four different
implementations of the List data structures:
 Using arrays
 Singly linked list
 Doubly linked list
 Circularly linked list.

 The interface to the List stayed the same, i.e.,
add(), get(), next(), start(), remove() etc.

Abstract Data Type

 We have looked at four different
implementations of the List data structures:
 Using arrays
 Singly linked list
 Doubly linked list
 Circularly linked list.

 The interface to the List stayed the same, i.e.,
add(), get(), next(), start(), remove() etc.

 The list is thus an abstract data type; we use it
without being concerned with how it is
implemented.

Abstract Data Type

 What we care about is the methods that are
available for use with the List ADT.

Abstract Data Type

 What we care about is the methods that are
available for use with the List ADT.

 We will follow this theme when we develop
other ADT.

Abstract Data Type

 What we care about is the methods that are
available for use with the List ADT.

 We will follow this theme when we develop
other ADT.

 We will publish the interface and keep the
freedom to change the implementation of ADT
without effecting users of the ADT.

Abstract Data Type

 What we care about is the methods that are
available for use with the List ADT.

 We will follow this theme when we develop
other ADT.

 We will publish the interface and keep the
freedom to change the implementation of ADT
without effecting users of the ADT.

 The C++ classes provide us the ability to create
such ADTs.

Stacks

• Stacks in real life: stack of books, stack of
plates

• Add new items at the top

• Remove an item at the top

• Stack data structure similar to real life:
collection of elements arranged in a linear
order.

• Can only access element at the top

Stack Operations

• Push(X) – insert X as the top element of
the stack

• Pop() – remove the top element of the
stack and return it.

• Top() – return the top element without
removing it from the stack.

Stack Operations

push(2)

top 2

push(5)

top

2

5

push(7)

top

2

5

7

push(1)

top

2

5

7

1

1 pop()

top

2

5

7

push(21)

top

2

5

7

21

21 pop()

top

2

5

7

7 pop()

2

5top

5 pop()

2top

Stack Operation

• The last element to go into the stack is the
first to come out: LIFO – Last In First Out.

• What happens if we call pop() and there is
no element?

• Have IsEmpty() boolean function that
returns true if stack is empty, false
otherwise.

• Throw StackEmpty exception: advanced
C++ concept.

Stack Implementation: Array

• Worst case for insertion and deletion from
an array when insert and delete from the
beginning: shift elements to the left.

• Best case for insert and delete is at the
end of the array – no need to shift any
elements.

• Implement push() and pop() by inserting
and deleting at the end of an array.

Stack using an Array

top

2

5

7

1
2 5 7 1

0 1 32 4

top = 3

Stack using an Array

• In case of an array, it is possible that the
array may “fill-up” if we push enough
elements.

• Have a boolean function IsFull() which
returns true is stack (array) is full, false
otherwise.

• We would call this function before calling
push(x).

Stack Operations with Array

int pop()
{
 return A[current--];
}

void push(int x)
{
 A[++current] = x;
}

Stack Operations with Array
int top()
{
 return A[current];
}
int IsEmpty()
{
 return (current == -1);
}
int IsFull()
{
 return (current == size-1);
}

• A quick examination shows that all five
operations take constant time.

Stack Using Linked List

• We can avoid the size limitation of a stack
implemented with an array by using a
linked list to hold the stack elements.

• As with array, however, we need to decide
where to insert elements in the list and
where to delete them so that push and
pop will run the fastest.

Stack Using Linked List

 We can avoid the size limitation of a stack
implemented with an array by using a
linked list to hold the stack elements.

 As with array, however, we need to decide
where to insert elements in the list and
where to delete them so that push and
pop will run the fastest.

Stack Using Linked List

 For a singly-linked list, insert at start or end
takes constant time using the head and current
pointers respectively.

 Removing an element at the start is constant
time but removal at the end required traversing
the list to the node one before the last.

 Make sense to place stack elements at the start
of the list because insert and removal are
constant time.

Stack Using Linked List

 No need for the current pointer; head is enough.

top

2

5

7

1
1 7 5 2

head

Stack Operation: List
int pop()
{
 int x = head->get();
 Node* p = head;
 head = head->getNext();
 delete p;
 return x;
}

top

2

5

7
1 7 5 2

head

Stack Operation: List
void push(int x)
{
 Node* newNode = new Node();
 newNode->set(x);
 newNode->setNext(head);
 head = newNode;
}

top

2

5

7

9

7 5 2

head

push(9)

9

newNode

Stack Operation: List

int top()
{
 return head->get();
}
int IsEmpty()
{
 return (head == NULL);
}

 All four operations take constant time.

Stack: Array or List
 Since both implementations support stack

operations in constant time, any reason to
choose one over the other?

 Allocating and deallocating memory for list nodes
does take more time than preallocated array.

 List uses only as much memory as required by
the nodes; array requires allocation ahead of
time.

 List pointers (head, next) require extra memory.
 Array has an upper limit; List is limited by

dynamic memory allocation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

