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Queues

 A stack is LIFO (Last-In First Out) 
structure. 

 In contrast, a queue is a FIFO (First-In 
First-Out ) structure.

 A queue is a linear structure for which 
items can be only inserted at one end and 
removed at another end.



Queue Operations

Enqueue(X) – place X at the rear of the 
queue.

Dequeue() -- remove the front element 
and return it.

Front() -- return front element without 
removing it.

IsEmpty() -- return TRUE if queue is 
empty, FALSE otherwise



Implementing Queue

 Using linked List: Recall
 Insert works in constant time for either end 

of a linked list.
 Remove works in constant time only.
 Seems best that head of the linked list be 

the front of the queue so that all removes 
will be from the front.

 Inserts will be at the end of the list.



Implementing Queue

 Using linked List:

front

2571 1 7 5 2

frontrear rear



Implementing Queue

 Using linked List:

front

2571 1 7 5 2

frontrear rear

front

257 1 7 5 2

frontrear rear

dequeue()



Implementing Queue

 Using linked List:

front

2571 1 7 5 2

frontrear rear

front

257 97 5 2

frontrear rear

enqueue(9)

9



Implementing Queue
int dequeue()
{
    int x = front->get();
    Node* p = front;
    front = front->getNext();
    delete p;
    return x;
}
void enqueue(int x)
{
    Node* newNode = new Node();
    newNode->set(x);
    newNode->setNext(NULL);
  rear->setNext(newNode);

    rear = newNode;
}



Implementing Queue

int front()
{
    return front->get();
}

int isEmpty()
{

return ( front == NULL );
}



Queue using Array

 If we use an array to hold queue elements, 
both insertions and removal at the front 
(start) of the array are expensive.

 This is because we may have to shift up to 
“n” elements.

 For the stack, we needed only one end; 
for queue we need both.

 To get around this, we will not shift upon 
removal of an element.



Queue using Array
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Queue using Array
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Queue using Array
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Queue using Array
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Queue using Array

 We have inserts and removal running in 
constant time but we created a new 
problem.

 Cannot insert new elements even though 
there are two places available at the start 
of the array.

 Solution: allow the queue to “wrap 
around”.



Queue using Array

 Basic idea is to picture the array as a 
circular array.
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Queue using Array

void enqueue(int x)
{
    rear = (rear+1)%size;
    array[rear] = x;

  noElements = noElements+1;
}
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Queue using Array

int isFull()
{
    return noElements == size;
}

int isEmpty()
{

  return noElements == 0;
}
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Queue using Array

int dequeue()
{
    int x = array[front];

  front = (front+1)%size;
  noElements = noElements-1;
  return x;

}
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Use of Queues

 Out of the numerous uses of the queues, 
one of the most useful is simulation.

 A simulation program attempts to model a 
real-world phenomenon.

 Many popular video games are 
simulations, e.g., SimCity, FlightSimulator

 Each object and action in the simulation 
has a counterpart in real world.



Uses of Queues

 If the simulation is accurate, the result of 
the program should mirror the results of 
the real-world event.

 Thus it is possible to understand what 
occurs in the real-world without actually 
observing its occurrence.

 Let us look at an example. Suppose there 
is a bank with four tellers.



Simulation of a Bank

 A customer enters the bank at a specific 
time (t1) desiring to conduct a transaction.

 Any one of the four tellers can attend to 
the customer.

 The transaction (withdraw, deposit) will 
take a certain period of time (t2).

 If a teller is free, the teller can process the 
customer’s transaction immediately and 
the customer leaves the bank at t1+t2.
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