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Queues

 A stack is LIFO (Last-In First Out) 
structure. 

 In contrast, a queue is a FIFO (First-In 
First-Out ) structure.

 A queue is a linear structure for which 
items can be only inserted at one end and 
removed at another end.



Queue Operations

Enqueue(X) – place X at the rear of the 
queue.

Dequeue() -- remove the front element 
and return it.

Front() -- return front element without 
removing it.

IsEmpty() -- return TRUE if queue is 
empty, FALSE otherwise



Implementing Queue

 Using linked List: Recall
 Insert works in constant time for either end 

of a linked list.
 Remove works in constant time only.
 Seems best that head of the linked list be 

the front of the queue so that all removes 
will be from the front.

 Inserts will be at the end of the list.



Implementing Queue

 Using linked List:
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Implementing Queue

 Using linked List:
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Implementing Queue
int dequeue()
{
    int x = front->get();
    Node* p = front;
    front = front->getNext();
    delete p;
    return x;
}
void enqueue(int x)
{
    Node* newNode = new Node();
    newNode->set(x);
    newNode->setNext(NULL);
  rear->setNext(newNode);

    rear = newNode;
}



Implementing Queue

int front()
{
    return front->get();
}

int isEmpty()
{

return ( front == NULL );
}



Queue using Array

 If we use an array to hold queue elements, 
both insertions and removal at the front 
(start) of the array are expensive.

 This is because we may have to shift up to 
“n” elements.

 For the stack, we needed only one end; 
for queue we need both.

 To get around this, we will not shift upon 
removal of an element.



Queue using Array
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Queue using Array
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Queue using Array
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Queue using Array
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Queue using Array
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Queue using Array
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Queue using Array

 We have inserts and removal running in 
constant time but we created a new 
problem.

 Cannot insert new elements even though 
there are two places available at the start 
of the array.

 Solution: allow the queue to “wrap 
around”.



Queue using Array

 Basic idea is to picture the array as a 
circular array.
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Queue using Array

void enqueue(int x)
{
    rear = (rear+1)%size;
    array[rear] = x;

  noElements = noElements+1;
}
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Queue using Array

int isFull()
{
    return noElements == size;
}

int isEmpty()
{

  return noElements == 0;
}
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Queue using Array

int dequeue()
{
    int x = array[front];

  front = (front+1)%size;
  noElements = noElements-1;
  return x;

}
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Use of Queues

 Out of the numerous uses of the queues, 
one of the most useful is simulation.

 A simulation program attempts to model a 
real-world phenomenon.

 Many popular video games are 
simulations, e.g., SimCity, FlightSimulator

 Each object and action in the simulation 
has a counterpart in real world.



Uses of Queues

 If the simulation is accurate, the result of 
the program should mirror the results of 
the real-world event.

 Thus it is possible to understand what 
occurs in the real-world without actually 
observing its occurrence.

 Let us look at an example. Suppose there 
is a bank with four tellers.



Simulation of a Bank

 A customer enters the bank at a specific 
time (t1) desiring to conduct a transaction.

 Any one of the four tellers can attend to 
the customer.

 The transaction (withdraw, deposit) will 
take a certain period of time (t2).

 If a teller is free, the teller can process the 
customer’s transaction immediately and 
the customer leaves the bank at t1+t2.
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