
Lecture No.08
Queues

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

Queues

 A stack is LIFO (Last-In First Out)
structure.

 In contrast, a queue is a FIFO (First-In
First-Out) structure.

 A queue is a linear structure for which
items can be only inserted at one end and
removed at another end.

Queue Operations

Enqueue(X) – place X at the rear of the
queue.

Dequeue() -- remove the front element
and return it.

Front() -- return front element without
removing it.

IsEmpty() -- return TRUE if queue is
empty, FALSE otherwise

Implementing Queue

 Using linked List: Recall
 Insert works in constant time for either end

of a linked list.
 Remove works in constant time only.
 Seems best that head of the linked list be

the front of the queue so that all removes
will be from the front.

 Inserts will be at the end of the list.

Implementing Queue

 Using linked List:

front

2571 1 7 5 2

frontrear rear

Implementing Queue

 Using linked List:

front

2571 1 7 5 2

frontrear rear

front

257 1 7 5 2

frontrear rear

dequeue()

Implementing Queue

 Using linked List:

front

2571 1 7 5 2

frontrear rear

front

257 97 5 2

frontrear rear

enqueue(9)

9

Implementing Queue
int dequeue()
{
 int x = front->get();
 Node* p = front;
 front = front->getNext();
 delete p;
 return x;
}
void enqueue(int x)
{
 Node* newNode = new Node();
 newNode->set(x);
 newNode->setNext(NULL);
 rear->setNext(newNode);

 rear = newNode;
}

Implementing Queue

int front()
{
 return front->get();
}

int isEmpty()
{

return (front == NULL);
}

Queue using Array

 If we use an array to hold queue elements,
both insertions and removal at the front
(start) of the array are expensive.

 This is because we may have to shift up to
“n” elements.

 For the stack, we needed only one end;
for queue we need both.

 To get around this, we will not shift upon
removal of an element.

Queue using Array

front

2571

rear

65 7

0

0 1 32 4

front

1 7 5 2

3

rear

Queue using Array

front

2571

rear

65 7

0

0 1 32 4

front

1 7 5 2

4

rear

enqueue(6)

6
6

Queue using Array

front

2571

rear

65 7

0

0 1 32 4

front

1 7 5 2

5

rear

enqueue(8)

6
6

8
8

Queue using Array

front

257

rear

65 7

1

0 1 32 4

front

7 5 2

5

rear

dequeue()

6
6

8
8

Queue using Array

front

25

rear

65 7

2

0 1 32 4

front

5 2

5

rear

dequeue()

6
6

8
8

Queue using Array

front

25

rear

65 7

2

0 1 32 4

front

5 2

7

rear

enqueue(9)
enqueue(12)

6
6

8
8

9
9

12
12

enqueue(21) ??

Queue using Array

 We have inserts and removal running in
constant time but we created a new
problem.

 Cannot insert new elements even though
there are two places available at the start
of the array.

 Solution: allow the queue to “wrap
around”.

Queue using Array

 Basic idea is to picture the array as a
circular array.

front

25

rear
2

front

7

rear

6 8 9 12
6

5

7

0 1

3

2

4

5

2
68

9

12

Queue using Array

void enqueue(int x)
{
 rear = (rear+1)%size;
 array[rear] = x;

 noElements = noElements+1;
}

front

25

rear
2

front

0

rear

6 8 9 12
6

5

7

0 1

3

2

4

5

2
68

9

12

enqueue(21)

21

21
8

size

7

noElements

Queue using Array

int isFull()
{
 return noElements == size;
}

int isEmpty()
{

 return noElements == 0;
}

front

25

rear
2

front

1

rear

6 8 9 12
6

5

7

0 1

3

2

4

5

2
68

9

12

enqueue(7)

21

21
8

size

8

noElements

7

7

Queue using Array

int dequeue()
{
 int x = array[front];

 front = (front+1)%size;
 noElements = noElements-1;
 return x;

}

front rear
4

front

1

rear

6 8 9 12
6

5

7

0 1

3

2

4

68
9

12

dequeue()

21

21
8

size

6

noElements

7

7

Use of Queues

 Out of the numerous uses of the queues,
one of the most useful is simulation.

 A simulation program attempts to model a
real-world phenomenon.

 Many popular video games are
simulations, e.g., SimCity, FlightSimulator

 Each object and action in the simulation
has a counterpart in real world.

Uses of Queues

 If the simulation is accurate, the result of
the program should mirror the results of
the real-world event.

 Thus it is possible to understand what
occurs in the real-world without actually
observing its occurrence.

 Let us look at an example. Suppose there
is a bank with four tellers.

Simulation of a Bank

 A customer enters the bank at a specific
time (t1) desiring to conduct a transaction.

 Any one of the four tellers can attend to
the customer.

 The transaction (withdraw, deposit) will
take a certain period of time (t2).

 If a teller is free, the teller can process the
customer’s transaction immediately and
the customer leaves the bank at t1+t2.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

