
Lecture No.08
Queues

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

Queues

 A stack is LIFO (Last-In First Out)
structure.

 In contrast, a queue is a FIFO (First-In
First-Out) structure.

 A queue is a linear structure for which
items can be only inserted at one end and
removed at another end.

Queue Operations

Enqueue(X) – place X at the rear of the
queue.

Dequeue() -- remove the front element
and return it.

Front() -- return front element without
removing it.

IsEmpty() -- return TRUE if queue is
empty, FALSE otherwise

Implementing Queue

 Using linked List: Recall
 Insert works in constant time for either end

of a linked list.
 Remove works in constant time only.
 Seems best that head of the linked list be

the front of the queue so that all removes
will be from the front.

 Inserts will be at the end of the list.

Implementing Queue

 Using linked List:

front

2571 1 7 5 2

frontrear rear

Implementing Queue

 Using linked List:

front

2571 1 7 5 2

frontrear rear

front

257 1 7 5 2

frontrear rear

dequeue()

Implementing Queue

 Using linked List:

front

2571 1 7 5 2

frontrear rear

front

257 97 5 2

frontrear rear

enqueue(9)

9

Implementing Queue
int dequeue()
{
 int x = front->get();
 Node* p = front;
 front = front->getNext();
 delete p;
 return x;
}
void enqueue(int x)
{
 Node* newNode = new Node();
 newNode->set(x);
 newNode->setNext(NULL);
 rear->setNext(newNode);

 rear = newNode;
}

Implementing Queue

int front()
{
 return front->get();
}

int isEmpty()
{

return (front == NULL);
}

Queue using Array

 If we use an array to hold queue elements,
both insertions and removal at the front
(start) of the array are expensive.

 This is because we may have to shift up to
“n” elements.

 For the stack, we needed only one end;
for queue we need both.

 To get around this, we will not shift upon
removal of an element.

Queue using Array

front

2571

rear

65 7

0

0 1 32 4

front

1 7 5 2

3

rear

Queue using Array

front

2571

rear

65 7

0

0 1 32 4

front

1 7 5 2

4

rear

enqueue(6)

6
6

Queue using Array

front

2571

rear

65 7

0

0 1 32 4

front

1 7 5 2

5

rear

enqueue(8)

6
6

8
8

Queue using Array

front

257

rear

65 7

1

0 1 32 4

front

7 5 2

5

rear

dequeue()

6
6

8
8

Queue using Array

front

25

rear

65 7

2

0 1 32 4

front

5 2

5

rear

dequeue()

6
6

8
8

Queue using Array

front

25

rear

65 7

2

0 1 32 4

front

5 2

7

rear

enqueue(9)
enqueue(12)

6
6

8
8

9
9

12
12

enqueue(21) ??

Queue using Array

 We have inserts and removal running in
constant time but we created a new
problem.

 Cannot insert new elements even though
there are two places available at the start
of the array.

 Solution: allow the queue to “wrap
around”.

Queue using Array

 Basic idea is to picture the array as a
circular array.

front

25

rear
2

front

7

rear

6 8 9 12
6

5

7

0 1

3

2

4

5

2
68

9

12

Queue using Array

void enqueue(int x)
{
 rear = (rear+1)%size;
 array[rear] = x;

 noElements = noElements+1;
}

front

25

rear
2

front

0

rear

6 8 9 12
6

5

7

0 1

3

2

4

5

2
68

9

12

enqueue(21)

21

21
8

size

7

noElements

Queue using Array

int isFull()
{
 return noElements == size;
}

int isEmpty()
{

 return noElements == 0;
}

front

25

rear
2

front

1

rear

6 8 9 12
6

5

7

0 1

3

2

4

5

2
68

9

12

enqueue(7)

21

21
8

size

8

noElements

7

7

Queue using Array

int dequeue()
{
 int x = array[front];

 front = (front+1)%size;
 noElements = noElements-1;
 return x;

}

front rear
4

front

1

rear

6 8 9 12
6

5

7

0 1

3

2

4

68
9

12

dequeue()

21

21
8

size

6

noElements

7

7

Use of Queues

 Out of the numerous uses of the queues,
one of the most useful is simulation.

 A simulation program attempts to model a
real-world phenomenon.

 Many popular video games are
simulations, e.g., SimCity, FlightSimulator

 Each object and action in the simulation
has a counterpart in real world.

Uses of Queues

 If the simulation is accurate, the result of
the program should mirror the results of
the real-world event.

 Thus it is possible to understand what
occurs in the real-world without actually
observing its occurrence.

 Let us look at an example. Suppose there
is a bank with four tellers.

Simulation of a Bank

 A customer enters the bank at a specific
time (t1) desiring to conduct a transaction.

 Any one of the four tellers can attend to
the customer.

 The transaction (withdraw, deposit) will
take a certain period of time (t2).

 If a teller is free, the teller can process the
customer’s transaction immediately and
the customer leaves the bank at t1+t2.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

