
Lecture No.09
Bank Simulation using Queues

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

Simulation of a Bank

 A customer enters the bank at a specific
time (t1) desiring to conduct a transaction.

 Any one of the four tellers can attend to
the customer.

 The transaction (withdraw, deposit) will
take a certain period of time (t2).

 If a teller is free, the teller can process the
customer’s transaction immediately and
the customer leaves the bank at t1+t2.

Simulation of a Bank

 It is possible that none of the four tellers is
free in which case there is a line of
customers at each teller.

 An arriving customer proceeds to the back
of the shortest line and waits for his turn.

 The customer leaves the bank at t2 time
units after reaching the front of the line.

 The time spent at the bank is t2 plus time
waiting in line.

Simulation of a Bank

teller 2teller 1 teller 3 teller 4

Simulation of a Bank

teller 2teller 1 teller 3 teller 4

Simulation of a Bank

teller 2teller 1 teller 3 teller 4

Simulation of a Bank

teller 2teller 1 teller 3 teller 4

Simulation of a Bank

teller 2teller 1 teller 3 teller 4

Simulation of a Bank

teller 2teller 1 teller 3 teller 4

Simulation of a Bank

teller 2teller 1 teller 3 teller 4

Simulation Models

 Two common models of simulation are
time-based simulation and event-based
simulation.

 In time-based simulation, we maintain a
timeline or a clock.

 The clock ticks. Things happen when the
time reaches the moment of an event.

Timeline based Simulation

 Consider the bank example. All tellers are free.
 Customer C1 comes in at time 2 minutes after

bank opens.
 His transaction (withdraw money) will require 4

minutes.
 Customer C2 arrives 4 minutes after the bank

opens. Will need 6 minutes for transaction.
 Customer C3 arrives 12 minutes after the bank

opens and needs 10 minutes.

Timeline based Simulation

 Events along the timeline:

10 11108765432 15141312

C2 in

C1 in C1 out

C2 out

C3 in

Time (minutes)

Timeline based Simulation

 We could write a main clock loop as follows:
clock = 0;

while(clock <= 24*60) { // one day

 read new customer;

 if customer.arrivaltime == clock

 insert into shortest queue;

 check the customer at head of all four queues.

 if transaction is over, remove from queue.

 clock = clock + 1;

}

Event based Simulation

 Don’t wait for the clock to tic until the next
event.

 Compute the time of next event and
maintain a list of events in increasing
order of time.

 Remove a event from the list in a loop and
process it.

Event based Simulation

 Events

10 11108765432 15141312

C2 in

C1 in C1 out

C2 out

C3 in

Time (minutes)

Event 1: 2 mins C1 in
Event 2: 4 mins C2 in
Event 3: 6 mins C1 out
Event 4: 10 mins C2 out
Event 5: 12 mins C3 in

Event based Simulation

 Maintain a queue of events.
 Remove the event with the earliest time

from the queue and process it.
 As new events are created, insert them in

the queue.
 A queue where the dequeue operation

depends not on FIFO, is called a priority
queue.

Event based Bank Simulation

 Development of the C++ code to carry out
the simulation.

 We will need the queue data structure.
 We will need the priority queue.
 Information about arriving customers will

be placed in an input file.
 Each line of the file contains the items

(arrival time,transaction duration)

Arriving Customers’ File

 Here are a few lines from the input file.
00 30 10 <- customer 1
00 35 05 <- customer 2
00 40 08
00 45 02
00 50 05
00 55 12
01 00 13
01 01 09

 “00 30 10” means Customer 1 arrives 30 minutes after bank opens
and will need 10 minutes for his transaction.

 “01 01 09” means customer arrives one hour and one minute after
bank opens and transaction will take 9 minutes.

Simulation Procedure

 The first event to occur is the arrival of the
first customer.

 This event is placed in the priority queue.
 Initially, the four teller queues are empty.
 The simulation proceeds as follows.
 When an arrival event is removed from the

priority queue, a node representing the
customer is placed on the shortest teller
queue.

Simulation Procedure

 If that customer is the only one on a teller
queue, an event for his departure is
placed on the priority queue.

 At the same time, the next input line is
read and an arrival event is placed in the
priority queue.

 When a departure event is removed from
the event priority queue, the customer
node is removed from the teller queue.

Simulation Procedure

 The total time spent by the customer is computed:
it is the time spent in the queue waiting and the
time taken for the transaction.

 This time is added to the total time spent by all
customers.

 At the end of the simulation, this total time divided
by the total customers served will be average time
spent by customers.

 The next customer in the queue is now served by
the teller.

 A departure event is placed on the event queue.

Code for Simulation

#include <iostream>
#include <string>
#include <strstream.h>

#include "Customer.cpp"
#include "Queue.h"
#include "PriorityQueue.cpp"
#include "Event.cpp"

Queue q[4]; // teller queues
PriorityQueue pq; //eventList;
int totalTime;
int count = 0;
int customerNo = 0;

Code for Simulation

main (int argc, char *argv[])
{

Customer* c;
Event* nextEvent;

// open customer arrival file

 ifstream data("customer.dat", ios::in);

// initialize with the first arriving
// customer.

 readNewCustomer(data);

Code for Simulation
while(pq.length() > 0)

 {
nextEvent = pq.remove();
c = nextEvent->getCustomer();
if(c->getStatus() == -1){ // arrival event
int arrTime = nextEvent->getEventTime();
int duration = c->getTransactionDuration();
int customerNo = c->getCustomerNumber();
processArrival(data, customerNo,
 arrTime, duration , nextEvent);

 }
 else { // departure event

int qindex = c->getStatus();
int departTime = nextEvent->getEventTime();
processDeparture(qindex, departTime, nextEvent);

 }
 }

Code for Simulation

void readNewCustomer(ifstream& data)
{

int hour,min,duration;
if (data >> hour >> min >> duration) {
customerNo++;
Customer* c = new Customer(customerNo,
hour*60+min, duration);
c->setStatus(-1); // new arrival
Event* e = new Event(c, hour*60+min);
pq.insert(e); // insert the arrival event
}
else {
data.close(); // close customer file
}

}

Code for Simulation
int processArrival(ifstream &data, int customerNo,

int arrTime, int duration,
Event* event)

{
int i, small, j = 0;
// find smallest teller queue

 small = q[0].length();
 for(i=1; i < 4; i++)

if(q[i].length() < small){
 small = q[i].length(); j = i;

}

// put arriving customer in smallest queue
Customer* c = new Customer(customerNo, arrTime,
duration);
c->setStatus(j); // remember which queue the
customer goes in
q[j].enqueue(c);

Code for Simulation

// check if this is the only customer in the.
// queue. If so, the customer must be marked for
// departure by placing him on the event queue.

if(q[j].length() == 1) {
c->setDepartureTime(arrTime+duration);
Event* e = new Event(c, arrTime+duration);
pq.insert(e);

}

// get another customer from the input
readNewCustomer(data);

}

Code for Simulation
int processDeparture(int qindex, int departTime,

Event* event)
{

Customer* cinq = q[qindex].dequeue();

int waitTime = departTime - cinq->getArrivalTime();
totalTime = totalTime + waitTime;
count = count + 1;

// if there are any more customers on the queue, mark
the
// next customer at the head of the queue for departure
// and place him on the eventList.
if(q[qindex].length() > 0) {

cinq = q[qindex].front();
int etime = departTime + cinq-

>getTransactionDuration();
Event* e = new Event(cinq, etime);
pq.insert(e);

}}

Code for Simulation

// print the final avaerage wait time.

double avgWait = (totalTime*1.0)/count;
cout << "Total time: " << totalTime << endl;
cout << “Customer: " << count << endl;
cout << "Average wait: " << avgWait << endl;

Priority Queue

#include "Event.cpp"
#define PQMAX 30

class PriorityQueue {
public:

PriorityQueue() {
size = 0; rear = -1;

};
~PriorityQueue() {};

int full(void)
{

 return (size == PQMAX) ? 1 : 0;
};

Priority Queue

Event* remove()
{

if(size > 0) {
 Event* e = nodes[0];

for(int j=0; j < size-2; j++)
nodes[j] = nodes[j+1];

size = size-1; rear=rear-1;
if(size == 0) rear = -1;

return e;
}
return (Event*)NULL;
cout << "remove - queue is empty." << endl;

};

Priority Queue

int insert(Event* e)
{

if(!full()) {
rear = rear+1;
nodes[rear] = e;
size = size + 1;

 sortElements(); // in ascending order
 return 1;
}
cout << "insert queue is full." << endl;
return 0;

};

int length() { return size; };
};

You may be thinking that the complete picture of simulation is
not visible. How will we run this simulation? Another
important tool in the simulation is animation. You have seen
the animation of traffic. Cars are moving and stopping on the
signals. Signals are turning into red, green and yellow. You can
easily understand from the animation. If the animation is
combined with the simulation, it is easily understood.
We have an animated tool here that shows the animation of the
events. A programmer can see the animation of the bank
simulation. With the help of this animation, you can better
understand the simulation.

In this animation, you can see the Entrance of the customers,
four tellers, priority queue and the Exit. The customers enter the
queue and as the tellers are free. They go to the teller straight.
Customer C1<30, 10> enters the bank. The customer C1 enters
after 30 mins and he needs 10 mins for the transaction. He goes
to the teller 1. Then customer C2 enters the bank and goes to
teller 2. When the transaction ends, the customer leaves the
bank. When tellers are not free, customer will wait in the queue.
In the event priority queue, we have different events. The entries
in the priority queue are like arr, 76 (arrival event at 76 min) or
q1, 80 (event in q1 at 80 min) etc. Let’s see the statistics when a
customer leaves the bank. At exit, you see the customer leaving
the bank as C15<68, 3><77, 3>, it means that the customer C15
enters the bank at 68 mins and requires 3 mins for his
transaction. He goes to the teller 4 but the teller is not free, so
the customer has to wait in the queue. He leaves the bank at 77
mins.

This course is not about the animation or simulation. We
will solve the problems, using different data structures.
Although with the help of simulation and animation, you
can have a real sketch of the problem.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

