
Lecture No.11
Binary Tree Implementation

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

Operations on Binary Tree
 There are a number of operations that can

be defined for a binary tree.
 If p is pointing to a node in an existing tree

then
 left(p) returns pointer to the left subtree
 right(p) returns pointer to right subtree
 parent(p) returns the father of p
 brother(p) returns brother of p.
 info(p) returns content of the node.

Operations on Binary Tree
 In order to construct a binary tree, the

following can be useful:
 setLeft(p,x) creates the left child node of p.

The child node contains the info ‘x’.
 setRight(p,x) creates the right child node

of p. The child node contains the info ‘x’.

Applications of Binary Trees
 A binary tree is a useful data structure

when two-way decisions must be made at
each point in a process.

 For example, suppose we wanted to find
all duplicates in a list of numbers:

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

Applications of Binary Trees
 One way of finding duplicates is to

compare each number with all those that
precede it.

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

Searching for Duplicates
 If the list of numbers is large and is

growing, this procedure involves a large
number of comparisons.

 A linked list could handle the growth but
the comparisons would still be large.

 The number of comparisons can be
drastically reduced by using a binary tree.

 The tree grows dynamically like the linked
list.

Searching for Duplicates
 The binary tree is built in a special way.
 The first number in the list is placed in a

node that is designated as the root of a
binary tree.

 Initially, both left and right subtrees of the
root are empty.

 We take the next number and compare it
with the number placed in the root.

 If it is the same then we have a duplicate.

Searching for Duplicates
 Otherwise, we create a new tree node and

put the new number in it.
 The new node is made the left child of the

root node if the second number is less
than the one in the root.

 The new node is made the right child if the
number is greater than the one in the root.

Searching for Duplicates

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

Searching for Duplicates

15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

1415

Searching for Duplicates

15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

15

Searching for Duplicates

4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

15

4

Searching for Duplicates

4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

154

Searching for Duplicates

9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

154

9

Searching for Duplicates

9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

154

9

Searching for Duplicates

7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

154

9

7

Searching for Duplicates

7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

154

9

7

Searching for Duplicates

18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

154

9

7

18

Searching for Duplicates

18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

154

9

7

18

Searching for Duplicates

3, 5, 16, 4, 20, 17, 9, 14, 5

14

154

9

7

18

3

Searching for Duplicates

3, 5, 16, 4, 20, 17, 9, 14, 5

14

154

9

7

183

Searching for Duplicates

5, 16, 4, 20, 17, 9, 14, 5

14

154

9

7

183

5

Searching for Duplicates

5, 16, 4, 20, 17, 9, 14, 5

14

154

9

7

183

5

Searching for Duplicates

16, 4, 20, 17, 9, 14, 5

14

154

9

7

183

5

16

Searching for Duplicates

16, 4, 20, 17, 9, 14, 5

14

154

9

7

183

5

16

Searching for Duplicates

4, 20, 17, 9, 14, 5

14

154

9

7

183

5

16

4

Searching for Duplicates

20, 17, 9, 14, 5

14

154

9

7

183

5

16

20

Searching for Duplicates

20, 17, 9, 14, 5

14

154

9

7

183

5

16 20

Searching for Duplicates

17, 9, 14, 5

14

154

9

7

183

5

16 20

17

Searching for Duplicates

17, 9, 14, 5

14

154

9

7

183

5

16 20

17

Searching for Duplicates

9, 14, 5

14

154

9

7

183

5

16 20

17

C++ Implementation
#include <stdlib.h>
template <class Object>
class TreeNode {
public:
 // constructors
 TreeNode()
 {
 this->object = NULL;
 this->left = this->right = NULL;
 };
 TreeNode(Object* object)
 {
 this->object = object;
 this->left = this->right = NULL;
 };

C++ Implementation
Object* getInfo()
{

return this->object;
};
void setInfo(Object* object)
{

this->object = object;
};
TreeNode* getLeft()
{

return left;
};
void setLeft(TreeNode *left)
{

this->left = left;
};

C++ Implementation
TreeNode *getRight()
{

return right;
};
void setRight(TreeNode *right)
{

this->right = right;
};

int isLeaf()
{

if(this->left == NULL && this->right == NULL)
 return 1;

return 0;
};

C++ Implementation
private:

 Object* object;

 TreeNode* left;

 TreeNode* right;

}; // end class TreeNode

C++ Implementation
#include <iostream>
#include <stdlib.h>
#include "TreeNode.cpp"

int main(int argc, char *argv[])
{

int x[] = { 14, 15, 4, 9, 7, 18, 3, 5, 16,4, 20, 17,
 9, 14,5, -1};

TreeNode<int>* root = new TreeNode<int>();
root->setInfo(&x[0]);
for(int i=1; x[i] > 0; i++)
{

insert(root, &x[i]);
}

}

C++ Implementation
void insert(TreeNode<int>* root, int* info)
{
 TreeNode<int>* node = new TreeNode<int>(info);
 TreeNode<int> *p, *q;
 p = q = root;
 while(*info != *(p->getInfo()) && q != NULL)
 {
 p = q;
 if(*info < *(p->getInfo()))
 q = p->getLeft();
 else
 q = p->getRight();
 }

C++ Implementation
 if(*info == *(p->getInfo())){

 cout << "attempt to insert duplicate: "

 << *info << endl;

 delete node;

 }

 else if(*info < *(p->getInfo()))

 p->setLeft(node);

 else

 p->setRight(node);

} // end of insert

Trace of insert

17, 9, 14, 5

14

154

9

7

183

5

16 20

17
p
q

Trace of insert

17, 9, 14, 5

14

154

9

7

183

5

16 20

17
p

q

Trace of insert

17, 9, 14, 5

14

154

9

7

183

5

16 20

17

p
q

Trace of insert

17, 9, 14, 5

14

154

9

7

183

5

16 20

17

p

q

Trace of insert

17, 9, 14, 5

14

154

9

7

183

5

16 20

17

p
q

Trace of insert

17, 9, 14, 5

14

154

9

7

183

5

16 20

17

p

q

Trace of insert

17, 9, 14, 5

14

154

9

7

183

5

16 20

17

p
q

Trace of insert

17, 9, 14, 5

14

154

9

7

183

5

16 20

17

p

q

Trace of insert

17, 9, 14, 5

14

154

9

7

183

5

16 20

17

p

p->setRight(node);

node

	Slide 1
	Operations on Binary Tree
	Slide 3
	Applications of Binary Trees
	Slide 5
	Searching for Duplicates
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	C++ Implementation
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Trace of insert
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

