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Operations on Binary Tree
 There are a number of operations that can 

be defined for a binary tree.
 If p is pointing to a node in an existing tree 

then
 left(p) returns pointer to the left subtree
 right(p) returns pointer to right subtree
 parent(p) returns the father of p
 brother(p) returns brother of p.
 info(p) returns content of the node.



Operations on Binary Tree
 In order to construct a binary tree, the 

following can be useful:
 setLeft(p,x) creates the left child node of p. 

The child node contains the info ‘x’.
 setRight(p,x) creates the right child node 

of p. The child node contains the info ‘x’.



Applications of Binary Trees
 A binary tree is a useful data structure 

when two-way decisions must be made at 
each point in a process.

 For example, suppose we wanted to find 
all duplicates in a list of numbers:

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5



Applications of Binary Trees
 One way of finding duplicates is to 

compare each number with all those that 
precede it.

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5



Searching for Duplicates
 If the list of numbers is large and is 

growing, this procedure involves a large 
number of comparisons.

 A linked list could handle the growth but 
the comparisons would still be large.

 The number of comparisons can be 
drastically reduced by using a binary tree.

 The tree grows dynamically like the linked 
list.



Searching for Duplicates
 The binary tree is built in a special way.
 The first number in the list is placed in a 

node that is designated as the root of a 
binary tree.

 Initially, both left and right subtrees of the 
root are empty.

 We take the next number and compare it 
with the number placed in the root.

 If it is the same then we have a duplicate.



Searching for Duplicates
 Otherwise, we create a new tree node and 

put the new number in it.
 The new node is made the left child of the 

root node if the second number is less 
than the one in the root.

 The new node is made the right child if the 
number is greater than the one in the root.



Searching for Duplicates

14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates

15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates

15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates

4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates

4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates

9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates

9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

14

154

9



Searching for Duplicates

7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates

7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates

18, 3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates
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Searching for Duplicates

3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates

3, 5, 16, 4, 20, 17, 9, 14, 5
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Searching for Duplicates
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Searching for Duplicates
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Searching for Duplicates
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Searching for Duplicates
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Searching for Duplicates
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Searching for Duplicates

20, 17, 9, 14, 5
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Searching for Duplicates
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Searching for Duplicates
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Searching for Duplicates
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Searching for Duplicates
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C++ Implementation
#include <stdlib.h>
template <class Object>
class TreeNode {    
public:
        // constructors
        TreeNode() 
        {
                this->object = NULL;  
                this->left = this->right = NULL;
        };
     TreeNode( Object* object ) 
        { 
                this->object = object; 
                this->left = this->right = NULL;
        };



C++ Implementation
Object* getInfo() 
{ 

return this->object; 
};
void setInfo(Object* object) 
{ 

this->object = object; 
};
TreeNode* getLeft() 
{ 

return left; 
};
void setLeft(TreeNode *left) 
{ 

this->left = left; 
};



C++ Implementation
TreeNode *getRight() 
{ 

return right; 
};
void setRight(TreeNode *right) 
{ 

this->right = right; 
};
    
int isLeaf( )
{

if( this->left == NULL && this->right == NULL ) 
   return 1;

return 0;
};



C++ Implementation
private:

    Object*   object;

    TreeNode* left;

    TreeNode* right;

}; // end class TreeNode



C++ Implementation
#include <iostream>
#include <stdlib.h>
#include "TreeNode.cpp"

int main(int argc, char *argv[])
{

int x[] = { 14, 15, 4, 9, 7, 18, 3, 5, 16,4, 20, 17, 
 9, 14,5, -1};

TreeNode<int>* root = new TreeNode<int>();
root->setInfo( &x[0] );
for(int i=1; x[i] > 0; i++ )
{

insert(root, &x[i] );
}

}



C++ Implementation
void insert(TreeNode<int>* root, int* info)
{
    TreeNode<int>* node = new TreeNode<int>(info);
    TreeNode<int> *p, *q;
    p = q = root;
    while( *info != *(p->getInfo()) && q != NULL )
    {
        p = q;
        if( *info < *(p->getInfo()) )
            q = p->getLeft();
        else
            q = p->getRight();
    }
    



C++ Implementation
  if( *info == *(p->getInfo()) ){

        cout << "attempt to insert duplicate: " 

       << *info << endl;

        delete node;

    }

    else if( *info < *(p->getInfo()) )

        p->setLeft( node );

    else

        p->setRight( node );        

} // end of insert



Trace of insert
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Trace of insert
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p->setRight( node );

node
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