
Lecture No.13
Binary Tree Traversal - II

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

Level-order Traversal
 There is yet another way of traversing a

binary tree that is not related to recursive
traversal procedures discussed previously.

 In level-order traversal, we visit the nodes
at each level before proceeding to the next
level.

 At each level, we visit the nodes in a left-
to-right order.

Level-order Traversal

Level-order: 14 4 15 3 9 18 7 16 20 5 17

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal
 How do we do level-order traversal?
 Surprisingly, if we use a queue instead of a

stack, we can visit the nodes in level-order.
 Here is the code for level-order traversal:

Level-order Traversal
void levelorder(TreeNode<int>* treeNode)
{
 Queue<TreeNode<int>* > q;
 if(treeNode == NULL) return;
 q.enqueue(treeNode);
 while(!q.empty())
 {
 treeNode = q.dequeue();
 cout << *(treeNode->getInfo()) << " ";
 if(treeNode->getLeft() != NULL)

q.enqueue(treeNode->getLeft());
 if(treeNode->getRight() != NULL)

q.enqueue(treeNode->getRight());
 }
 cout << endl;
}

Level-order Traversal
void levelorder(TreeNode<int>* treeNode)
{
 Queue<TreeNode<int>* > q;
 if(treeNode == NULL) return;
 q.enqueue(treeNode);
 while(!q.empty())
 {
 treeNode = q.dequeue();
 cout << *(treeNode->getInfo()) << " ";
 if(treeNode->getLeft() != NULL)

q.enqueue(treeNode->getLeft());
 if(treeNode->getRight() != NULL)

q.enqueue(treeNode->getRight());
 }
 cout << endl;
}

Level-order Traversal
void levelorder(TreeNode<int>* treeNode)
{
 Queue<TreeNode<int>* > q;
 if(treeNode == NULL) return;
 q.enqueue(treeNode);
 while(!q.empty())
 {
 treeNode = q.dequeue();
 cout << *(treeNode->getInfo()) << " ";
 if(treeNode->getLeft() != NULL)

q.enqueue(treeNode->getLeft());
 if(treeNode->getRight() != NULL)

q.enqueue(treeNode->getRight());
 }
 cout << endl;
}

Level-order Traversal
void levelorder(TreeNode<int>* treeNode)
{
 Queue<TreeNode<int>* > q;
 if(treeNode == NULL) return;
 q.enqueue(treeNode);
 while(!q.empty())
 {
 treeNode = q.dequeue();
 cout << *(treeNode->getInfo()) << " ";
 if(treeNode->getLeft() != NULL)

q.enqueue(treeNode->getLeft());
 if(treeNode->getRight() != NULL)

q.enqueue(treeNode->getRight());
 }
 cout << endl;
}

Level-order Traversal
void levelorder(TreeNode<int>* treeNode)
{
 Queue<TreeNode<int>* > q;
 if(treeNode == NULL) return;
 q.enqueue(treeNode);
 while(!q.empty())
 {
 treeNode = q.dequeue();
 cout << *(treeNode->getInfo()) << " ";
 if(treeNode->getLeft() != NULL)

q.enqueue(treeNode->getLeft());
 if(treeNode->getRight() != NULL)

q.enqueue(treeNode->getRight());
 }
 cout << endl;
}

Level-order Traversal
void levelorder(TreeNode<int>* treeNode)
{
 Queue<TreeNode<int>* > q;
 if(treeNode == NULL) return;
 q.enqueue(treeNode);
 while(!q.empty())
 {
 treeNode = q.dequeue();
 cout << *(treeNode->getInfo()) << " ";
 if(treeNode->getLeft() != NULL)

q.enqueue(treeNode->getLeft());
 if(treeNode->getRight() != NULL)

q.enqueue(treeNode->getRight());
 }
 cout << endl;
}

Level-order Traversal
void levelorder(TreeNode<int>* treeNode)
{
 Queue<TreeNode<int>* > q;
 if(treeNode == NULL) return;
 q.enqueue(treeNode);
 while(!q.empty())
 {
 treeNode = q.dequeue();
 cout << *(treeNode->getInfo()) << " ";
 if(treeNode->getLeft() != NULL)

q.enqueue(treeNode->getLeft());
 if(treeNode->getRight() != NULL)

q.enqueue(treeNode->getRight());
 }
 cout << endl;
}

Level-order Traversal
void levelorder(TreeNode<int>* treeNode)
{
 Queue<TreeNode<int>* > q;
 if(treeNode == NULL) return;
 q.enqueue(treeNode);
 while(!q.empty())
 {
 treeNode = q.dequeue();
 cout << *(treeNode->getInfo()) << " ";
 if(treeNode->getLeft() != NULL)

q.enqueue(treeNode->getLeft());
 if(treeNode->getRight() != NULL)

q.enqueue(treeNode->getRight());
 }
 cout << endl;
}

Level-order Traversal

Queue: 14
Output:

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue: 4 15
Output: 14

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue: 15 3 9
Output: 14 4

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue: 3 9 18
Output: 14 4 15

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue: 9 18
Output: 14 4 15 3

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue: 18 7
Output: 14 4 15 3 9

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue: 7 16 20
Output: 14 4 15 3 9 18

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue: 16 20 5
Output: 14 4 15 3 9 18 7

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue: 20 5 17
Output: 14 4 15 3 9 18 7 16

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue: 5 17
Output: 14 4 15 3 9 18 7 16 20

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue: 17
Output: 14 4 15 3 9 18 7 16 20 5

14

4

9

7

3

5

15

18

16 20

17

Level-order Traversal

Queue:
Output: 14 4 15 3 9 18 7 16 20 5 17

14

4

9

7

3

5

15

18

16 20

17

Storing other Type of Data
 The examples of binary trees so far have

been storing integer data in the tree node.
 This is surely not a requirement. Any type

of data can be stored in a tree node.
 Here, for example, is the C++ code to build

a tree with character strings.

Binary Search Tree with Strings
void wordTree()

{

TreeNode<char>* root = new TreeNode<char>();

static char* word[] = {"babble", "fable", "jacket",
 "backup", "eagle","daily","gain","bandit","abandon",

 "abash","accuse","economy","adhere","advise","cease",

 "debunk","feeder","genius","fetch","chain", NULL};

root->setInfo(word[0]);

for(i=1; word[i]; i++)

insert(root, word[i]);

inorder(root); cout << endl;

}

Binary Search Tree with Strings
void wordTree()

{

TreeNode<char>* root = new TreeNode<char>();

static char* word[] = "babble", "fable", "jacket",
 "backup", "eagle","daily","gain","bandit","abandon",

 "abash","accuse","economy","adhere","advise","cease",

 "debunk","feeder","genius","fetch","chain", NULL};

root->setInfo(word[0]);

for(i=1; word[i]; i++)

insert(root, word[i]);

inorder(root); cout << endl;

}

Binary Search Tree with Strings
void wordTree()

{

TreeNode<char>* root = new TreeNode<char>();

static char* word[] = "babble", "fable", "jacket",
 "backup", "eagle","daily","gain","bandit","abandon",

 "abash","accuse","economy","adhere","advise","cease",

 "debunk","feeder","genius","fetch","chain", NULL};

root->setInfo(word[0]);

for(i=1; word[i]; i++)

insert(root, word[i]);

inorder(root); cout << endl;

}

Binary Search Tree with Strings
void wordTree()

{

TreeNode<char>* root = new TreeNode<char>();

static char* word[] = "babble", "fable", "jacket",
 "backup", "eagle","daily","gain","bandit","abandon",

 "abash","accuse","economy","adhere","advise","cease",

 "debunk","feeder","genius","fetch","chain", NULL};

root->setInfo(word[0]);

for(i=1; word[i]; i++)

insert(root, word[i]);

inorder(root); cout << endl;

}

Binary Search Tree with Strings
void wordTree()

{

TreeNode<char>* root = new TreeNode<char>();

static char* word[] = "babble", "fable", "jacket",
 "backup", "eagle","daily","gain","bandit","abandon",

 "abash","accuse","economy","adhere","advise","cease",

 "debunk","feeder","genius","fetch","chain", NULL};

root->setInfo(word[0]);

for(i=1; word[i]; i++)

insert(root, word[i]);

inorder(root); cout << endl;

}

Binary Search Tree with Strings
void insert(TreeNode<char>* root, char* info)

{

 TreeNode<char>* node = new TreeNode<char>(info);

 TreeNode<char> *p, *q;

 p = q = root;

 while(strcmp(info, p->getInfo()) != 0 && q != NULL)

 {

 p = q;

 if(strcmp(info, p->getInfo()) < 0)

 q = p->getLeft();

 else

 q = p->getRight();

 }

Binary Search Tree with Strings
void insert(TreeNode<char>* root, char* info)

{

 TreeNode<char>* node = new TreeNode<char>(info);

 TreeNode<char> *p, *q;

 p = q = root;

 while(strcmp(info, p->getInfo()) != 0 && q != NULL)

 {

 p = q;

 if(strcmp(info, p->getInfo()) < 0)

 q = p->getLeft();

 else

 q = p->getRight();

 }

Binary Search Tree with Strings
void insert(TreeNode<char>* root, char* info)

{

 TreeNode<char>* node = new TreeNode<char>(info);

 TreeNode<char> *p, *q;

 p = q = root;

 while(strcmp(info, p->getInfo()) != 0 && q != NULL)

 {

 p = q;

 if(strcmp(info, p->getInfo()) < 0)

 q = p->getLeft();

 else

 q = p->getRight();

 }

Binary Search Tree with Strings
void insert(TreeNode<char>* root, char* info)

{

 TreeNode<char>* node = new TreeNode<char>(info);

 TreeNode<char> *p, *q;

 p = q = root;

 while(strcmp(info, p->getInfo()) != 0 && q != NULL)

 {

 p = q;

 if(strcmp(info, p->getInfo()) < 0)

 q = p->getLeft();

 else

 q = p->getRight();

 }

Binary Search Tree with Strings
void insert(TreeNode<char>* root, char* info)

{

 TreeNode<char>* node = new TreeNode<char>(info);

 TreeNode<char> *p, *q;

 p = q = root;

 while(strcmp(info, p->getInfo()) != 0 && q != NULL)

 {

 p = q;

 if(strcmp(info, p->getInfo()) < 0)

 q = p->getLeft();

 else

 q = p->getRight();

 }

Binary Search Tree with Strings
if(strcmp(info, p->getInfo()) == 0){

 cout << "attempt to insert duplicate: " << *info

 << endl;

 delete node;

}

else if(strcmp(info, p->getInfo()) < 0)

 p->setLeft(node);

else

 p->setRight(node);

}

Binary Search Tree with Strings
if(strcmp(info, p->getInfo()) == 0){

 cout << "attempt to insert duplicate: " << *info

 << endl;

 delete node;

}

else if(strcmp(info, p->getInfo()) < 0)

 p->setLeft(node);

else

 p->setRight(node);

}

Binary Search Tree with Strings
if(strcmp(info, p->getInfo()) == 0){

 cout << "attempt to insert duplicate: " << *info

 << endl;

 delete node;

}

else if(strcmp(info, p->getInfo()) < 0)

 p->setLeft(node);

else

 p->setRight(node);

}

Binary Search Tree with Strings
Output:

abandon
abash
accuse
adhere
advise
babble
backup
bandit
cease
chain
daily
debunk
eagle
economy
fable
feeder
fetch
gain
genius
jacket

Binary Search Tree with Strings
abandon
abash
accuse
adhere
advise
babble
backup
bandit
cease
chain
daily
debunk
eagle
economy
fable
feeder
fetch
gain
genius
jacket

 Notice that the words are sorted in
increasing order when we traversed
the tree in inorder manner.

Binary Search Tree with Strings
abandon
abash
accuse
adhere
advise
babble
backup
bandit
cease
chain
daily
debunk
eagle
economy
fable
feeder
fetch
gain
genius
jacket

 Notice that the words are sorted in
increasing order when we traversed
the tree in inorder manner.

 This should not come as a surprise if
you consider how we built the BST.

Binary Search Tree with Strings
abandon
abash
accuse
adhere
advise
babble
backup
bandit
cease
chain
daily
debunk
eagle
economy
fable
feeder
fetch
gain
genius
jacket

 Notice that the words are sorted in
increasing order when we traversed
the tree in inorder manner.

 This should not come as a surprise if
you consider how we built the BST.

 For a given node, values less than the
info in the node were all in the left
subtree and values greater or equal
were in the right.

Binary Search Tree with Strings
abandon
abash
accuse
adhere
advise
babble
backup
bandit
cease
chain
daily
debunk
eagle
economy
fable
feeder
fetch
gain
genius
jacket

 Notice that the words are sorted in
increasing order when we traversed
the tree in inorder manner.

 This should not come as a surprise if
you consider how we built the BST.

 For a given node, values less than the
info in the node were all in the left
subtree and values greater or equal
were in the right.

 Inorder prints the left subtree, then the
node finally the right subtree.

Binary Search Tree with Strings
abandon
abash
accuse
adhere
advise
babble
backup
bandit
cease
chain
daily
debunk
eagle
economy
fable
feeder
fetch
gain
genius
jacket

 Notice that the words are sorted in
increasing order when we traversed
the tree in inorder manner.

 This should not come as a surprise if
you consider how we built the BST.

 For a given node, values less than the
info in the node were all in the left
subtree and values greater or equal
were in the right.

 Inorder prints the left subtree, then the
node finally the right subtree.

 Building a BST and doing an inorder
traversal leads to a sorting algorithm.

Binary Search Tree with Strings
abandon
abash
accuse
adhere
advise
babble
backup
bandit
cease
chain
daily
debunk
eagle
economy
fable
feeder
fetch
gain
genius
jacket

 Notice that the words are sorted in
increasing order when we traversed
the tree in inorder manner.

 This should not come as a surprise if
you consider how we built the BST.

 For a given node, values less than the
info in the node were all in the left
subtree and values greater or equal
were in the right.

 Inorder prints the left subtree, then the
node finally the right subtree.

 Building a BST and doing an inorder
traversal leads to a sorting algorithm.

Deleting a node in BST
 As is common with many data structures,

the hardest operation is deletion.
 Once we have found the node to be

deleted, we need to consider several
possibilities.

 If the node is a leaf, it can be deleted
immediately.

Deleting a node in BST
 If the node has one child, the node can be

deleted after its parent adjusts a pointer to
bypass the node and connect to inorder
successor.

6

2

4

3

1

8

Deleting a node in BST
 The inorder traversal order has to be

maintained after the delete.

6

2

4

3

1

8

6

2

4

3

1

8

Deleting a node in BST
 The inorder traversal order has to be

maintained after the delete.

6

2

4

3

1

8

6

2

4

3

1

8

6

2

31

8

Deleting a node in BST
 The complicated case is when the node to

be deleted has both left and right subtrees.
 The strategy is to replace the data of this

node with the smallest data of the right
subtree and recursively delete that node.

Deleting a node in BST
Delete(2): locate inorder successor

6

2

5

3

1

8

4
Inorder

successor

Deleting a node in BST
Delete(2): locate inorder successor

6

2

5

3

1

8

4
Inorder

successor

 Inorder successor will be the left-most
node in the right subtree of 2.

 The inorder successor will not have a left
child because if it did, that child would be
the left-most node.

Deleting a node in BST
Delete(2): copy data from inorder successor

6

2

5

3

1

8

4

 6

3

5

3

1

8

4

Deleting a node in BST
Delete(2): remove the inorder successor

6

2

5

3

1

8

4

 6

3

5

3

1

8

4

 6

3

5

3

1

8

4

Deleting a node in BST
Delete(2)

 6

3

5

4

1

8

 6

3

5

3

1

8

4

	Slide 1
	Level-order Traversal
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Storing other Type of Data
	Binary Search Tree with Strings
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Deleting a node in BST
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

