
Lecture No.15
Reference Variables

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

Reference Variables

 The symbol “&” has a few different purposes
depending on where it occurs in code.

 When it appears in front of a variable name, it
is the address operator, i.e., it returns the
address of the variable in memory.

int x;
int* ptr = &x;

Reference Variables

 The symbol “&’ can also appear after a type
in a function signature:

 For example, insert and remove from the
BinarySearchTree class.

void insert(const EType& x);

 void remove(const EType& x);

Reference Variables

 Or, in case we designed the
BinarySearchTree class to hold integers
only, i.e., no templates

void insert(const int& x);

 void remove(const int& x);

Reference Variables

 The “&” indicates a parameter that is a
reference variable.

 Consider the following three different
functions:

Reference Variables

// example 1

int intMinus1(int oldVal)

{

oldVal = oldVal – 1;

return oldVal;

}

Reference Variables

// example 2

int intMinus2(int* oldVal)

{

*oldVal = *oldVal – 2;

return *oldVal;

}

Reference Variables

// example 3

int intMinus3(int& oldVal)

{

oldVal = oldVal – 3;

return oldVal;

}

Reference Variables

The caller function: calling intMinus1

void caller()
{

int myInt = 31;
int retVal;
retVal = intMinus1(myInt);
cout << myInt << retVal;

}

Memory Organization

Code

Static data

Stack

Heap

Process 1
(browser)

Process 3
(word)

Process 4
(ourtest.exe)

Windows OS

Process 2
(dev-c++)

Reference Variables
 Call stack layout

Parameters(caller)

Local variables(caller)

Return address(caller)

Parameters(intMinus1)

Local variables(intMinus1)

Return address(intMinus1)
sp

Stack grows downwards

Reference Variables

Call stack layout when intMinus1 is called:

1052

1060

1068

1056

311072

?

caller’s other stuff

myInt

retVal

oldVal31

calling function “caller”

called function “intMinus1”

stack grows downwards

sp

Reference Variables

 How are myInt and oldVal related?
 Passing myInt to the function
intMinus1 results in a copy of myInt
to be placed in parameter oldVal in
the call stack.

 Alterations are done to the copy of “31”
(stored in oldVal) and not the original
myInt.

Reference Variables

 The original myInt remains
unchanged.

 For this reason, this technique of
passing parameters is called pass by
value.

 Alterations are done to the copy of “31”
(stored in oldVal) and not the original
myInt.

Reference Variables

Call stack layout after subtraction in intMinus1:

1052

1060

1068

1056

311072

?

caller’s other stuff

myInt

retVal

oldVal31

calling function “caller”

called function “intMinus1”

stack grows downwards

sp

30

Reference Variables

Call stack layout after return from intMinus1:

1068

311072

30

caller’s other stuff

myInt

retVal
calling function “caller”

stack grows downwards

sp

Reference Variables

 We could have called intMinus1 as
void caller()
{

int retVal;
retVal = intMinus1(31);// literal
cout << myInt << retVal;

}
 Because it is the value that is passed. We

can always pass a literal or even an
expression in call-by-value.

Reference Variables

 If the programmer wanted to actually change a
variable’s value from within a function, one way
would be to send a pointer:
void caller()
{

int retVal;
int myInt = 31;
retVal = intMinus2(&myInt);
cout << myInt << retVal;

}
 Call this call-by-pointer.

Reference Variables

Call stack layout when intMinus2 is called:

1052

1060

1068

1056

311072

?

caller’s other stuff

myInt

retVal

oldVal1072

calling function “caller”

called function “intMinus2”

stack grows downwards

sp

Reference Variables
Call stack layout after *oldVal = *oldVal – 2;

1052

1060

1068

1056

311072

?

caller’s other stuff

myInt

retVal

oldVal1072

calling function “caller”

called function “intMinus2”

stack grows downwards

sp

29

Reference Variables

Call stack layout after return from intMinus2.

1068

311072

29

caller’s other stuff

myInt

retVal
calling function “caller”

stack grows downwards

sp

29

Reference Variables

 Suppose we want a function to change
an object.

 But we don’t want to send the function a
copy. The object could be large and
copying it costs time.

 We don’t want to use pointers because
of the messy syntax.

Reference Variables

 The answer: call-by-reference (or pass-
by-reference):

void caller()
{

int retVal;
int myInt = 31;
retVal = intMinus3(myInt);
cout << myInt << retVal;

}

Reference Variables

 The & after int means that oldVal is an
integer reference variable.

// example 3

int intMinus3(int& oldVal)

{

oldVal = oldVal – 3;

return oldVal;

}

Reference Variables

 So what is a reference variable?
 The idea is: the integer object myInt is used

exactly as it exists in the caller. The function
simply reaches it through a different name,
oldVal.

 The function intMinus3 cannot use the name
myInt because it is in the caller’s scope.

 But both variable names refer to the same
object (same memory cell).

Reference Variables

Call stack layout when intMinus3 is called:

1052

1060

1068

1056

311072

?

caller’s other stuff

myInt

retVal

oldVal

calling function “caller”

called function “intMinus3”

stack grows downwards

sp

Reference Variables

Call stack layout when intMinus3 is called:

1052

1060

1068

1056

311072

?

caller’s other stuff

myInt

retVal

oldVal

calling function “caller”

called function “intMinus3”

stack grows downwards

sp

Reference Variables

Call stack layout after oldVal = oldVal - 3:

1052

1060

1068

1056

311072

?

caller’s other stuff

myInt

retVal

oldVal

calling function “caller”

called function “intMinus3”

stack grows downwards

sp

28

Reference Variables

Call stack layout after return from intMinus3:

1068

311072

28

caller’s other stuff

myInt

retVal
calling function “caller”

stack grows downwards

sp

28

Reference Variables

 The compiler may actually implement call-
by-reference using pointers as we did in
example 2.

 The obtaining of address and de-
referencing would be done behind the
scene.

 We should think in terms of the
“renaming” abstraction.

Reference Variables

 One should be careful about transient
objects that are stored by reference in
data structures.

 Consider the following code that stores
and retrieves objects in a queue.

Reference Variables

void loadCustomer(Queue& q)

{

Customer c1(“irfan”);

Customer c2(“sohail”;

q.enqueue(c1);

q.enqueue(c2);

}

Reference Variables

void serviceCustomer(Queue& q)

{

Customer c = q.dequeue();

cout << c.getName() << endl;

}

 We got the reference but the object is gone!
 The objects were created on the call stack.

They disappeared when the loadCustomer
function returned.

Reference Variables

void loadCustomer(Queue& q)
{
Customer* c1 = new Customer(“irfan”);
Customer* c2 = new Customer(“sohail”;
q.enqueue(c1); // enqueue takes pointers
q.enqueue(c2);

}

 The pointer variables c1 and c2 are on the call
stack. They will go but their contents
(addresses) are queued.

 The Customer objects are created in the
heap. They will live until explicitly deleted.

Memory Organization

Code

Static data

Stack

Heap

Process 1
(browser)

Process 3
(word)

Process 4
(ourtest.exe)

Windows OS

Process 2
(dev-c++)

Reference Variables
Call stack layout when q.enqueue(c2) called in loadCustomer.

1052

1060

1068

1056

6001072

624
.
.
.

c1
c2

loadCustomer

enqueue

stack grows downwards
sp

(elt)(624)

elt

Reference Variables
Heap layout during call to loadCustomer.

600

624

c1

c2

Customer(“irfan”) -> c1

heap grows upwards

648

Customer(“sohail”) -> c2

irfan

sohail

Reference Variables

void serviceCustomer(Queue& q)
{
Customer* c = q.dequeue();
cout << c->getName() << endl;
delete c; // the object in heap dies

}

 Must use the c-> syntax because we
get a pointer from the queue.

 The object is still alive because it was
created in the heap.

The const Keyword

 The const keyword is often used
in function signatures.

 The actual meaning depends on
where it occurs but it generally
means something is to held
constant.

 Here are some common uses.

The const Keyword

 Use 1: The const keyword appears before a
function parameter. E.g., in a chess program:

int movePiece(const Piece& currentPiece)

 The parameter must remain constant for the life of
the function.

 If you try to change the value, e.g., parameter
appears on the left hand side of an assignment,
the compiler will generate and error.

The const Keyword

 This also means that if the parameter is passed
to another function, that function must not
change it either.

 Use of const with reference parameters is very
common.

 This is puzzling; why are we passing something
by reference and then make it constant, i.e.,
don’t change it?

 Doesn’t passing by reference mean we want to
change it?

The const Keyword

 The answer is that, yes, we don’t want the
function to change the parameter, but neither do
we want to use up time and memory creating
and storing an entire copy of it.

 So, we make the original object available to the
called function by using pass-by-reference.

 We also mark it constant so that the function will
not alter it, even by mistake.

The const Keyword

 Use 2: The const keyword appears at the end of
class member’s function signature:

EType& findMin() const;

 Such a function cannot change or write to
member variables of that class.

 This type of usage often appears in functions that
are suppose to read and return member variables.

The const Keyword

 Use 3: The const keyword appears at the
beginning of the return type in function
signature:

const EType& findMin() const;

 Means, whatever is returned is constant.
 The purpose is typically to protect a reference

variable.
 This also avoids returning a copy of an object.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Reference Variables
	Slide 32
	Slide 33
	Slide 34
	Memory Organization
	Slide 36
	Slide 37
	Slide 38
	The const Keyword
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

