

Lecture No.17
Deletion in AVL Trees

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

 2



TreeNode<int>* doubleLeftRightRotation(TreeNode<int>* k3)

{

 if(k3 == NULL) return NULL;

 // single left rotate with k1 (k3's left child)

 k3->setLeft(singleLeftRotation(k3->getLeft()));

 // now single right rotate with k3 as the root

 return singleRightRotation(k3);

}

k1 k3

DA
B C

k2

k1

k3

D

A B

C

k2

doubleRightLeftRotation

 3

Deletion in AVL Tree

 Delete is the inverse of insert: given a
value X and an AVL tree T, delete the
node containing X and rebalance the tree,
if necessary.

 Turns out that deletion of a node is
considerably more complex than insert

 4

Deletion in AVL Tree

 Insertion in a height-balanced tree
requires at most one single rotation or
one double rotation.

 We can use rotations to restore the
balance when we do a deletion.

 We may have to do a rotation at every
level of the tree: log2N rotations in the
worst case.

 5

Deletion in AVL Tree
 Here is a tree that causes this worse case number of

rotations when we delete A. At every node in N’s left subtree,
the left subtree is one shorter than the right subtree.

A

C

D

N

E J

G

I

F

H

K

L

M

 6

Deletion in AVL Tree
 Deleting A upsets balance at C. When rotate (D up, C

down) to fix this

A

C

D

N

E J

G

I

F

H

K

L

M

 7

Deletion in AVL Tree
 Deleting A upsets balance at C. When rotate (D up, C

down) to fix this

C

D

N

E J

G

I

F

H

K

L

M

 8

Deletion in AVL Tree
 The whole of F’s left subtree gets shorter. We fix this by

rotation about F-I: F down, I up.

C

D

N

E

J

G

I

F

H

K

L

M

 9

Deletion in AVL Tree
 The whole of F’s left subtree gets shorter. We fix this by

rotation about F-I: F down, I up.

C

D

N

E

J

G

I

F

H

K

L

M

 10

Deletion in AVL Tree
 This could cause imbalance at N.
 The rotations propagated to the root.

C

D

N

E

JG

I

F

H

K

L

M

 11

Deletion in AVL Tree

Procedure
 Delete the node as in binary search tree (BST).
 The node deleted will be either a leaf or have just

one subtree.
 Since this is an AVL tree, if the deleted node has

one subtree, that subtree contains only one node
(why?)

 Traverse up the tree from the deleted node
checking the balance of each node.

 12

Deletion in AVL Tree

 There are 5 cases to consider.
 Let us go through the cases graphically and

determine what action to take.
 We will not develop the C++ code for

deleteNode in AVL tree. This will be left as
an exercise.

 13

Deletion in AVL Tree

Case 1a: the parent of the deleted node had a balance of 0
and the node was deleted in the parent’s left subtree.

Action: change the balance of the parent node and stop. No
further effect on balance of any higher node.

Delete on
this side

 14

Deletion in AVL Tree

Here is why; the height of left tree does not change.

1

2

3

4

5

6

7

0

1

2

 15

Deletion in AVL Tree

Here is why; the height of left tree does not change.

1

2

3

4

5

6

7

2

3

4

5

6

7

0

1

2

remove(1)

 16

Deletion in AVL Tree

Case 1b: the parent of the deleted node had a balance of 0
and the node was deleted in the parent’s right subtree.

Action: (same as 1a) change the balance of the parent node
and stop. No further effect on balance of any higher node.

Delete on
this side

 17

Deletion in AVL Tree

Case 2a: the parent of the deleted node had a balance of 1
and the node was deleted in the parent’s left subtree.

Action: change the balance of the parent node. May have
caused imbalance in higher nodes so continue up the tree.

Delete on
this side

 18

Deletion in AVL Tree

 There are 5 cases to consider.
 Let us go through the cases graphically and

determine what action to take.
 We will not develop the C++ code for

deleteNode in AVL tree. This will be left as
an exercise.

 19

Deletion in AVL Tree

Case 1a: the parent of the deleted node had a balance of 0
and the node was deleted in the parent’s left subtree.

Action: change the balance of the parent node and stop. No
further effect on balance of any higher node.

Delete on
this side

 20

Deletion in AVL Tree

Here is why; the height of left tree does not change.

1

2

3

4

5

6

7

0

1

2

 21

Deletion in AVL Tree

Here is why; the height of left tree does not change.

1

2

3

4

5

6

7

2

3

4

5

6

7

0

1

2

remove(1)

 22

Deletion in AVL Tree

Case 1b: the parent of the deleted node had a balance of 0
and the node was deleted in the parent’s right subtree.

Action: (same as 1a) change the balance of the parent node and stop. No further
effect on balance of any higher node.

Delete on
this side

 23

Deletion in AVL Tree

Case 2a: the parent of the deleted node had a balance of 1
and the node was deleted in the parent’s left subtree.

Action: change the balance of the parent node. May have caused imbalance in
higher nodes so continue up the tree.

Delete on
this side

 24

Deletion in AVL Tree

Case 2b: the parent of the deleted node had a balance of -1
and the node was deleted in the parent’s right subtree.

Action: same as 2a: change the balance of the parent node. May have caused
imbalance in higher nodes so continue up the tree.

Delete on
this side

 25

Deletion in AVL Tree

Case 3a: the parent had balance of -1 and the node was
deleted in the parent’s left subtree, right subtree was balanced.

 26

Deletion in AVL Tree

Case 3a: the parent had balance of -1 and the node was
deleted in the parent’s left subtree, right subtree was balanced.

Action: perform single rotation, adjust balance. No effect on balance of higher nodes
so stop here.

Single rotate

 27

Deletion in AVL Tree

Case 4a: parent had balance of -1 and the node was deleted in
the parent’s left subtree, right subtree was unbalanced.

 28

Deletion in AVL Tree

Case 4a: parent had balance of -1 and the node was deleted in
the parent’s left subtree, right subtree was unbalanced.

Action: Double rotation at B. May have effected the balance of higher nodes, so
continue up the tree.

rotate

double

 29

Deletion in AVL Tree

Case 5a: parent had balance of -1 and the node was deleted in
the parent’s left subtree, right subtree was unbalanced.

 30

Deletion in AVL Tree

Case 5a: parent had balance of -1 and the node was deleted in
the parent’s left subtree, right subtree was unbalanced.

Action: Single rotation at B. May have effected the balance of higher nodes, so
continue up the tree.

rotate

single

 31

Other Uses of Binary Trees

Expression Trees

 32

Expression Trees

 Expression trees, and the more general
parse trees and abstract syntax trees are
significant components of compilers.

 Let us consider the expression tree.

 33

Expression Tree

(a+b*c)+((d*e+f)*g)

a

c

+

b

g

*

+

+

d

*

*

e

f

 34

Parse Tree in Compiler

Expression grammar

<assign>  <id> := <expr>
<id>  A | B | C
<expr>  <expr> + <term> | <term>
<term>  <term> * <factor> | <factor>
<factor>  (<expr>) | <id>

<assign>

<id> <expr>

<expr> <term>

<term>

<term> <factor>

C

B

*

+

<id>

<id>

A

:=

A

<id>

<factor>

<factor>

A := A + B * C

 35

Parse Tree for an SQL query

Consider querying a movie database

Find the titles for movies with stars born in 1960

The database has tables

StarsIn(title, year, starName)

MovieStar(name, address, gender, birthdate)

SELECT title
FROM StarsIn, MovieStar
WHERE starName = name AND birthdate LIKE ‘%1960’ ;

 36

SQL Parse Tree

< Query >

SELECT <SelList> FROM <FromList> WHERE <Condition>

<Attribute> <RelName> , <FromList> AND

title StarsIn <RelName>

<Condition> <Condition>

<Attribute> = <Attribute> <Attribute> LIKE <Pattern>

starName name birthdate
‘%1960’

MovieStar

 37

Compiler Optimization

Common subexpression:
(f+d*e)+((d*e+f)*g)

f

e

+

d

g

*

+

+

d

*

*

e

f

 38

Compiler Optimization

(Common subexpression:
(f+d*e)+((d*e+f)*g)

f

e

+

d

g

*

+

*

Graph!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

