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

TreeNode<int>* doubleLeftRightRotation(TreeNode<int>* k3)

{

    if( k3 == NULL ) return NULL;

    // single left rotate with k1 (k3's left child)

    k3->setLeft( singleLeftRotation(k3->getLeft()));

    // now single right rotate with k3 as the root

    return singleRightRotation(k3);

}

k1 k3

DA
B C

k2

k1

k3

D

A B

C

k2

doubleRightLeftRotation



  3

Deletion in AVL Tree

 Delete is the inverse of insert: given a 
value X and an AVL tree T, delete the 
node containing X and rebalance the tree, 
if necessary.

 Turns out that deletion of a node is 
considerably more complex than insert
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Deletion in AVL Tree

 Insertion in a height-balanced tree 
requires at most one single rotation or 
one double rotation.

 We can use rotations to restore the 
balance when we do a deletion.

 We may have to do a rotation at every 
level of the tree: log2N rotations in the 
worst case.
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Deletion in AVL Tree
 Here is a tree that causes this worse case number of 

rotations when we delete A. At every node in N’s left subtree, 
the left subtree is one shorter than the right subtree. 
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Deletion in AVL Tree
 Deleting A upsets balance at C. When rotate (D up, C 

down) to fix this
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Deletion in AVL Tree
 Deleting A upsets balance at C. When rotate (D up, C 

down) to fix this
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Deletion in AVL Tree
 The whole of F’s left subtree gets shorter. We fix this by 

rotation about F-I: F down, I up.
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Deletion in AVL Tree
 The whole of F’s left subtree gets shorter. We fix this by 

rotation about F-I: F down, I up.
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Deletion in AVL Tree
 This could cause imbalance at N.
 The rotations propagated to the root.
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Deletion in AVL Tree

Procedure
 Delete the node as in binary search tree (BST).
 The node deleted will be either a leaf or have just 

one subtree.
 Since this is an AVL tree, if the deleted node has 

one subtree, that subtree contains only one node 
(why?)

 Traverse up the tree from the deleted node 
checking the balance of each node.
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Deletion in AVL Tree

 There are 5 cases to consider.
 Let us go through the cases graphically and 

determine what action to take.
 We will not develop the C++ code for 

deleteNode in AVL tree. This will be left as 
an exercise.
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Deletion in AVL Tree

Case 1a: the parent of the deleted node had a balance of 0 
and the node was deleted in the parent’s left subtree.

Action: change the balance of the parent node and stop. No 
further effect on balance of any higher node.

Delete on 
this side
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Deletion in AVL Tree

Here is why; the height of left tree does not change.
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Deletion in AVL Tree

Here is why; the height of left tree does not change.
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Deletion in AVL Tree

Case 1b: the parent of the deleted node had a balance of 0 
and the node was deleted in the parent’s right subtree.

Action: (same as 1a) change the balance of the parent node 
and stop. No further effect on balance of any higher node.

Delete on 
this side
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Deletion in AVL Tree

Case 2a: the parent of the deleted node had a balance of 1 
and the node was deleted in the parent’s left subtree.

Action: change the balance of the parent node. May have 
caused imbalance in higher nodes so continue up the tree.

Delete on 
this side
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Deletion in AVL Tree

 There are 5 cases to consider.
 Let us go through the cases graphically and 

determine what action to take.
 We will not develop the C++ code for 

deleteNode in AVL tree. This will be left as 
an exercise.



  19

Deletion in AVL Tree

Case 1a: the parent of the deleted node had a balance of 0 
and the node was deleted in the parent’s left subtree.

Action: change the balance of the parent node and stop. No 
further effect on balance of any higher node.

Delete on 
this side



  20

Deletion in AVL Tree

Here is why; the height of left tree does not change.
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Deletion in AVL Tree

Here is why; the height of left tree does not change.
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Deletion in AVL Tree

Case 1b: the parent of the deleted node had a balance of 0 
and the node was deleted in the parent’s right subtree.

Action: (same as 1a) change the balance of the parent node and stop. No further 
effect on balance of any higher node.

Delete on 
this side
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Deletion in AVL Tree

Case 2a: the parent of the deleted node had a balance of 1 
and the node was deleted in the parent’s left subtree.

Action: change the balance of the parent node. May have caused imbalance in 
higher nodes so continue up the tree.

Delete on 
this side
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Deletion in AVL Tree

Case 2b: the parent of the deleted node had a balance of -1 
and the node was deleted in the parent’s right subtree.

Action: same as 2a: change the balance of the parent node. May have caused 
imbalance in higher nodes so continue up the tree.

Delete on 
this side
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Deletion in AVL Tree

Case 3a: the parent had balance of -1 and the node was 
deleted in the parent’s left subtree, right subtree was balanced.
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Deletion in AVL Tree

Case 3a: the parent had balance of -1 and the node was 
deleted in the parent’s left subtree, right subtree was balanced.

Action: perform single rotation, adjust balance. No effect on balance of higher nodes 
so stop here.

Single rotate
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Deletion in AVL Tree

Case 4a: parent had balance of -1 and the node was deleted in 
the parent’s left subtree, right subtree was unbalanced.
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Deletion in AVL Tree

Case 4a: parent had balance of -1 and the node was deleted in 
the parent’s left subtree, right subtree was unbalanced.

Action: Double rotation at B. May have effected the balance of higher nodes, so 
continue up the tree.

rotate

double
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Deletion in AVL Tree

Case 5a: parent had balance of -1 and the node was deleted in 
the parent’s left subtree, right subtree was unbalanced.
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Deletion in AVL Tree

Case 5a: parent had balance of -1 and the node was deleted in 
the parent’s left subtree, right subtree was unbalanced.

Action: Single rotation at B. May have effected the balance of higher nodes, so 
continue up the tree.

rotate

single
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Other Uses of Binary Trees

Expression Trees
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Expression Trees

 Expression trees, and the more general 
parse trees and abstract syntax trees are 
significant components of compilers.

 Let us consider the expression tree.
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Expression Tree

(a+b*c)+((d*e+f)*g)
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Parse Tree in Compiler

Expression grammar

<assign>  <id> := <expr>
<id>  A | B | C
<expr>  <expr> + <term> | <term>
<term>  <term> * <factor> | <factor> 
<factor>  ( <expr> ) | <id>

<assign>

<id> <expr>

<expr> <term>

<term>

<term> <factor>

C

B

*

+

<id>

<id>

A

:=

A

<id>

<factor>

<factor>

A := A + B * C
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Parse Tree for an  SQL query

Consider querying a movie database

Find the titles for movies with stars born in 1960

The database has tables

StarsIn(title, year, starName)

MovieStar(name, address, gender, birthdate)

SELECT title
FROM    StarsIn, MovieStar
WHERE starName = name AND birthdate LIKE ‘%1960’ ;
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SQL Parse Tree

< Query >

SELECT   <SelList> FROM    <FromList>     WHERE       <Condition>

<Attribute>      <RelName> , <FromList>                   AND

title              StarsIn     <RelName> 

<Condition>                        <Condition>

<Attribute>       =    <Attribute>         <Attribute>  LIKE  <Pattern>

starName                 name              birthdate            
‘%1960’

MovieStar
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Compiler Optimization

Common subexpression:
(f+d*e)+((d*e+f)*g)
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Compiler Optimization

(Common subexpression:
(f+d*e)+((d*e+f)*g)
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