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Expression Tree

 The inner nodes contain operators while leaf nodes 
contain operands.
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Expression Tree

 The tree is binary because the operators are binary.
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Expression Tree

 This is not necessary. A unary operator (!, e.g.) will 
have only one subtree.
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Expression Tree

 Inorder traversal yields: a+b*c+d*e+f*g
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Enforcing Parenthesis

/* inorder traversal routine using the parenthesis 
*/

void inorder(TreeNode<int>* treeNode)
{
  if( treeNode != NULL )
  {
    if(treeNode->getLeft() != NULL && treeNode-

>getRight() != NULL) //if not leaf
      cout<<"(";
    inorder(treeNode->getLeft());
    cout << *(treeNode->getInfo())<<" ";
    inorder(treeNode->getRight());
    if(treeNode->getLeft() != NULL && treeNode-

>getRight() != NULL) //if not leaf
      cout<<")";
  }
}



Expression Tree

 Inorder : (a+(b*c))+(((d*e)+f)*g)
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Expression Tree

 Postorder traversal: a b c * + d e * f + g * +
which is the postfix form.
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Constructing Expression Tree

 Algorithm to convert postfix expression into an 
expression tree.

 We already have an expression to convert an 
infix expression to postfix.

 Read a symbol from the postfix expression.
 If symbol is an operand, put it in a one node tree 

and push it on a stack.
 If symbol is an operator, pop two trees from the 

stack, form a new tree with operator as the root 
and T1 and T2 as left and right subtrees and 
push this tree on the stack.



Constructing Expression Tree

 a b + c d e + * *

stack



Constructing Expression Tree

 a b + c d e + * *

ba

Stack is growing left to right

If symbol is an 
operand, put it in 
a one node tree 
and push it on a 
stack.

top



Constructing Expression Tree

 a b + c d e + * *

ba

Stack is growing left to right

+

If symbol is an 
operator, pop two 
trees from the stack, 
form a new tree with 
operator as the root 
and T1 and T2 as left 
and right subtrees and 
push this tree on the 
stack.



Constructing Expression Tree

 a b + c d e + * *
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Constructing Expression Tree

 a b + c d e + * *

ba

+ c

ed

+



Constructing Expression Tree

 a b + c d e + * *
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Constructing Expression Tree

 a b + c d e + * *
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