

Lecture No.18
Expression Trees

CC-213 Data Structures
Department of Computer Science

University of the Punjab

Slides modified very slightly from the late Dr. Sohail Aslam’s lectures at VU

Lecture No.25

Data Structures

Dr. Sohail Aslam

Expression Tree

 The inner nodes contain operators while leaf nodes
contain operands.

a

c

+

b

g

*

+

+

d

*

*

e

f

Expression Tree

 The tree is binary because the operators are binary.

a

c

+

b

g

*

+

+

d

*

*

e

f

Expression Tree

 This is not necessary. A unary operator (!, e.g.) will
have only one subtree.

a

c

+

b

g

*

+

+

d

*

*

e

f

Expression Tree

 Inorder traversal yields: a+b*c+d*e+f*g

a

c

+

b

g

*

+

+

d

*

*

e

f

Enforcing Parenthesis

/* inorder traversal routine using the parenthesis
*/

void inorder(TreeNode<int>* treeNode)
{
 if(treeNode != NULL)
 {
 if(treeNode->getLeft() != NULL && treeNode-

>getRight() != NULL) //if not leaf
 cout<<"(";
 inorder(treeNode->getLeft());
 cout << *(treeNode->getInfo())<<" ";
 inorder(treeNode->getRight());
 if(treeNode->getLeft() != NULL && treeNode-

>getRight() != NULL) //if not leaf
 cout<<")";
 }
}

Expression Tree

 Inorder : (a+(b*c))+(((d*e)+f)*g)

a

c

+

b

g

*

+

+

d

*

*

e

f

Expression Tree

 Postorder traversal: a b c * + d e * f + g * +
which is the postfix form.

a

c

+

b

g

*

+

+

d

*

*

e

f

Constructing Expression Tree

 Algorithm to convert postfix expression into an
expression tree.

 We already have an expression to convert an
infix expression to postfix.

 Read a symbol from the postfix expression.
 If symbol is an operand, put it in a one node tree

and push it on a stack.
 If symbol is an operator, pop two trees from the

stack, form a new tree with operator as the root
and T1 and T2 as left and right subtrees and
push this tree on the stack.

Constructing Expression Tree

 a b + c d e + * *

stack

Constructing Expression Tree

 a b + c d e + * *

ba

Stack is growing left to right

If symbol is an
operand, put it in
a one node tree
and push it on a
stack.

top

Constructing Expression Tree

 a b + c d e + * *

ba

Stack is growing left to right

+

If symbol is an
operator, pop two
trees from the stack,
form a new tree with
operator as the root
and T1 and T2 as left
and right subtrees and
push this tree on the
stack.

Constructing Expression Tree

 a b + c d e + * *

ba

+ dc e

Constructing Expression Tree

 a b + c d e + * *

ba

+ c

ed

+

Constructing Expression Tree

 a b + c d e + * *

ba

+

c

ed

+

*

Constructing Expression Tree

 a b + c d e + * *

ba

+

c

ed

+

*

*

	Slide 1
	Slide 2
	Expression Tree
	Slide 4
	Slide 5
	Slide 6
	Enforcing Parenthesis
	Slide 8
	Slide 9
	Constructing Expression Tree
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

