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CNN Variations

I There are lots of variations of the basic CNN idea.
I Fully convolutional networks. No pooling and no fully connected layer.
I 1× 1 convolutions to reduce computations.
I Inception modules to combine multiple filter sizes.
I Residual blocks to avoid vanishing gradients.
I Depthwise separable convolutions to reduce parameters and computations.
I Lightweight and fast models (SqueezeNet, MobileNet, . . . ) for edge

computing.
I Fast search over hyperparameters (EfficientNet).

I A whole course can be dedicated to CNNs alone.
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Cost of Convolution Layer

Conv

Cost = # multiplications = (128× 128× 64)︸ ︷︷ ︸
Output neurons

× (5× 5× 256)︸ ︷︷ ︸
Cost per neuron

= 6710886400
= 6.7 billion
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1 × 1 convolution

ConvConv

Cost =

(128× 128× 32)︸ ︷︷ ︸
Output neurons

× (1× 1× 256)︸ ︷︷ ︸
Cost per neuron

+

(128× 128× 64)︸ ︷︷ ︸
Output neurons

× (5× 5× 32)︸ ︷︷ ︸
Cost per neuron


= 134217728+ 838860800
= 973078528 = 0.97 billion

Almost 7 times reduction in number of multiplications to produce output
volume of the same size.
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1 × 1 convolution

I A 1× 1 convolution is just a linear combination of the input channels.
I The fully connected layer of a traditional MLP can also be represented via

1× 1 convolutions.
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Depthwise Separable Convolution
What happens in standard convolution?

Consider the case of standard convolution using 3 filters.

Conv

Number of weights to produce 3 channel output = 3× 3× 6× 3 = 162.
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Depthwise Separable Convolution
What happens in standard convolution?

The first output channel is produced by 6 channel-wise convolutions that are
then added together.

Sum
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Depthwise Separable Convolution
What happens in standard convolution?

Summation of per-channel results corresponds to 1× 1 convolution with a
volume of 1s.

Sum
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Depthwise Separable Convolution

Replace sum by a linear combination. This is called a depthwise separable
convolution.
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Depthwise Separable Convolution

Multiple linear combinations lead to multiple output channels.

Number of weights to produce 3 channel output = (3× 3× 6) + (6× 3) = 72.

Expensive convolution (excluding the summation) is performed only once.
Multiple channels are produced via cheap 1× 1 convolution.
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Transposed Convolution

3 -1 5

17 5 4

0 9 13

A transposed convolution superimposes copies of the filter F scaled by the
values in input I . Can be used to increase size.

+
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Unpooling

X

X

XX

Input Pooling Unpooling

Reverses the size reduction effect of subsampling.
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Fully Convolutional Networks (FCN)

I An architecture for semantic segmentation.
I Only locally connected layers: convolution, pooling and upsampling.
I No fully connected layers (fewer parameters, faster training).
I Input image can be of any size.
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The problem with fully connected layers

32 C+S 64 C+S Flatten

I K -class classification of an input image requires K softmax neurons at the
output.

I 1024 neurons in fully connected layer imply that H ×W must equal 256.
I So this can work with images of a certain size.
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Fully Convolutional Networks

32 C+S 64 C+S 4 1x1 convolutions Global
Pooling

I K 1× 1 convolutions corresponding to K classes.
I Followed by global pooling in each of the K channels.
I Followed by softmax.
I Can work with images of any size.
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Image Generation via CNN

4 6

-8 23

4

6

-8 23

Pooling Unpooling Transposed Convolution
(after cropping borders)

I Subsampled 2× 2 result unpooled to a sparse 4× 4 result that is then
filled in via transposed convolution.

I Repeatedly upsample to obtain output of the same size as input.
I To generate images, use identity function at output.
I To generate pixel labels, use sigmoid or softmax.
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FCN for Semantic Segmentation1

Each output pixel belongs to one of 21 classes.

1Segment image regions corresponding to different objects and find class of each object
as well.
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DeconvNet for Semantic Segmentation
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Residual Block

Standard propagation through two layers.
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Residual Block

Skip connection between two layers.
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Residual Block

Weight layer

Weight layer

If F (x) approaches zero for any reason (e.g. due to weight regularization), the
original input x can still be carried through.
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Summary

I Vanilla CNNs have been extended in many ways.
I 1× 1 convolutions reduce computations and allow the construction of

FCNs.
I Depth-wise separable convolutions reduce parameters and computations.
I Unpooling and transposed convolutions generate upsampled results to

output images instead of vectors.
I Residual blocks avoid vanishing gradients and make the learning task

easier.
I FCNs have no fully connected layers. They allow inputs of any size.
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