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NN Multivariate Chain Rule Backpropagation Summary

Neural Networks
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Output of a neural network can be visualised graphically as forward

propagation of information.
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Neural Networks
Notation

I Input layer neurons will be indexed
by i .

I Hidden layer neurons will be
indexed by j .

I Next hidden layer or output layer
neurons will be indexed by k .

I Weights of j-th hidden neuron will
be denoted by the vector

w
(1)
j ∈ RD .

I Weight between i-th input neuron

and j-th hidden neuron is w
(1)
ji .

I Weights of k-th output neuron will
be denoted by the vector

w
(2)
k ∈ RM .

I Weight between j-th hidden neuron

and k-th output neuron is w
(2)
kj .
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Neural Networks
Forward Propagation

I For input x, denote output of hidden layer
as the vector z(x) ∈ RM .

I Model zj(x) as a non-linear function h(aj)

where pre-activation aj = w
(1)T
j x with

adjustable parameters w
(1)
j .
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I So the k-th output can be written as

yk(x) = f (ak) = f (w
(2)T
k z(x))

= f

 M∑
j=1

w
(2)
kj zj(x) + w

(2)
k0

 = f

 M∑
j=1

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xi

)
+ w

(2)
k0


where we have prepended x0 = 1 to to absorb bias input and w

(1)
j0 and

w
(2)
k0 represent biases.



NN Multivariate Chain Rule Backpropagation Summary

Neural Networks
Forward Propagation

I The computation

yk(x,W) = f

 M∑
j=1

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xi

)
+ w

(2)
k0


can be viewed in two stages:

1. zj = h(w
(1)T
j x) for j = 1, . . . ,M.

2. yk = f (w
(2)T
k z).
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Neural Networks
Forward Propagation

I If we de�ne the matrices

W(1) =


←− w

(1)T
1
−→

←− w
(1)T
2
−→

...

←− w
(1)T
M −→


︸ ︷︷ ︸

M×(D+1)

and W(2) =


←− w

(2)T
1
−→

←− w
(2)T
2
−→

...

←− w
(2)T
K −→


︸ ︷︷ ︸

K×(M+1)

then forward propagation constitutes

1. z = h(W(1)x).
2. Prepend 1 to z.

3. y = f (W(2)z).
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Neural Networks for Regression
Gradients

I Regression requires continuous output yk ∈ R.
I So use identity activation function yk = f (ak) = ak .

I Loss can be written as

L(W(1),W(2)) =
1

2

N∑
n=1

‖yn − tn‖2︸ ︷︷ ︸
Ln

=
1

2

N∑
n=1

K∑
k=1

(ynk − tnk)
2

I Loss L depends on sum of individual losses Ln.

I In the following, we will focus on loss Ln for the n-th training sample.

I We will drop n for notational clarity and refer to Ln simply as L.
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How do weights in�uence loss?
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I w
(2)
kj in�uences a

(2)
k which in�uences yk which in�uences L.

I For scalar dependencies, use chain rule.

I w
(1)
ji in�uences a

(1)
j which in�uences zj which in�uences a

(2)
1
, a

(2)
2
, a

(2)
3

which in�uence y1, y2, y3 which in�uence L.

I For vector/multivariate dependencies, use multivariate chain rule.
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How do weights in�uence loss?
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I Layer 2: L← yk ← a
(2)
k ← w

(2)
kj .

L(yk(a
(2)
k (w

(2)
kj )))

I Layer 1: L← y← a(2) ← zj ← a
(1)
j ← w

(1)
ji .

L(y1(a
(2)
1

(zj(a
(1)
j (w

(1)
ji ))))︸ ︷︷ ︸

y1(w
(1)
ji )

, y2(a
(2)
2

(zj(a
(1)
j (w

(1)
ji ))))︸ ︷︷ ︸

y2(w
(1)
ji )

, . . . , yk(a
(2)
k (zj(a

(1)
j (w

(1)
ji )))))︸ ︷︷ ︸

yk (w
(1)
ji )
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Multivariate Chain Rule

I The chain rule of di�erentiation states

df (u(x))

dx
=

df

du

du

dx

I The multivariate chain rule of di�erentiation
states

df (u(x),v(x))

dx
=
∂f

∂u

du

dx
+
∂f

∂v

dv

dx

I The multivariate chain rule applied to compute
derivatives w.r.t weights of hidden layers has a
special name � backpropagation.

x u f

x

u

v

f (u, v)
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Backpropagation
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I For the output layer weights

∂L(yk(a
(2)
k (w

(2)
kj )))

∂w
(2)
kj

=
∂L

∂a
(2)
k

∂a
(2)
k

∂w
(2)
kj

= δkzj
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Backpropagation
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I For the hidden layer weights, using the multivariate chain rule

∂

∂w
(1)
ji

L(y1(a
(2)
1

(zj(a
(1)
j (w

(1)
ji )))),y2(a

(2)
2

(zj(a
(1)
j (w

(1)
ji )))), . . . ,yk(a

(2)
k (zj(a

(1)
j (w

(1)
ji )))))

=
∂L

∂a
(1)
j

∂a
(1)
j

∂w
(1)
ji

=
K∑

k=1

∂L

∂a
(2)
k︸ ︷︷ ︸
δk

∂a
(2)
k

∂zj︸ ︷︷ ︸
w

(2)
kj

∂zj

∂a
(1)
j︸ ︷︷ ︸

h′(a
(1)
j )︸ ︷︷ ︸

∂L

∂a
(1)
j

=δj

∂a
(1)
j

∂w
(1)
ji︸ ︷︷ ︸
xi

= δjxi

I Notice that gradient = δ× input.
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Backpropagation

I It is important to note that

δj = h′(aj)
K∑

k=1

δkwkj

yields the error δj at hidden neuron j by backpropagating the errors δk
from all output neurons that use the output of neuron j .

I More generally, compute error δj at a layer by backpropagating the errors
δk from next layer.

I Hence the names error backpropagation, backpropagation, or simply
backprop.

I Very useful machine learning technique that is not limited to neural

networks.
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Backpropagation

δ
(1)
j = h′(aj)

K∑
k=1

δ
(2)
k wkj
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Figure: Visual representation of backpropagation of delta values of layer l + 1 to

compute delta values of layer l .
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Backpropagation
Learning Algorithm

1. Forward propagate the input vector xn to compute and store activations
and outputs of every neuron in every layer.

2. Evaluate δk = ∂Ln
∂ak

for every neuron in output layer.

3. Evaluate δj =
∂Ln
∂aj

for every neuron in every hidden layer via

backpropagation.

δj = h′(aj)
K∑

k=1

δkwkj

4. Compute derivative of each weight ∂Ln
∂w via δ×input.

5. Update each weight via gradient descent w τ+1 = w τ − η ∂Ln∂w .
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Summary

I Forward propagation from inputs to output can be modeled via
matrix-vector products.

I Backpropagation is merely an implementation of the multivariate chain
rule from calculus.
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