CS-568 Deep Learning

Gradient Descent Variations

Nazar Khan
Department of Computer Science

University of the Punjab

So far ...

» Neural Networks are universal approximators.
» Backpropagation allows computation of derivatives in hidden layers.

» Gradient descent finds weights corresponding to local minimum of loss
surface.

» In this lecture: alternative methods of finding local minima of loss surface.

» First-order methods
> Rprop
» Second-order methods
> Taylor series approximation
> Newton's method
> Quickprop
» Next lecture:

» Momentum-based first-order methods

Nazar Khan Deep Learning

e

Gradient Descent in Higher Dimensions

» Let Aw”T! denote the step at time 7 + 1.
W = T L AT
» For gradient descent
Aw™ = VT L
» For gradient descent in 1D,

dL

A 7'+1:_ =
v T]dWT

The only issue is determining learning rate 7).

Nazar Khan Deep Learning

e

fx,y) = —exp (—(3x)2 = (3¥)?) Iso-contours of f(x,y)

y
o
a
I
\ %
[e
©
-
o
L
&
S

A function that changes faster in y-direction.

» In higher dimensions, if ‘ ’ >> ‘ ‘ then using the same 7 can result

in overshooting in the dlrectlon of w; and very slow convergence in the
direction of w;.

» Solution: separate learning rate 7); for each direction w;.

Nazar Khan Deep Learning

Resilient Propagation (Rprop)

» In Rprop!, each direction is handled independently.

» Increase learning rate for direction i if current derivative has same sign as
previous derivative.
» Otherwise, you just overshot a minimum.

> So go back to previous location.
> Decrease learning rate for that direction.
» Update parameter with this smaller step.

o oL oL
i f Iw; "r ¥ owi | _q >0
ni =9 Bn; if gvﬁ; T * gmL/,- . <0

n; otherwise

» Hyperparameters should follow the constraint @ > 1 and 8 < 1.

'Riedmiller and Braun, ‘A direct adaptive method for faster backpropagation learning:
The RPROP algorithm'.

Nazar Khan Deep Learning

Resilient Propagation (Rprop)

» Typical values are « = 1.2 and 8 = 0.5
> Increase learning rate slowly but decrease quickly when you overshoot

» In practice, learning rates are bounded via nmin and Nmax

: L
min(an;, Mmax) if 8‘9‘;‘ * gw,- . >0
.
. L
ni = max(ﬁnianmm if 8L ‘ gWi 1 <0
.
otherwise

Ni

» Rprop converges much faster than gradient descent
» But it works well when derivatives are accumulated over large batches

Deep Learning

Nazar Khan

Taylor Series

Taylor Series Approximation

» If values of a function f(a) and its derivatives f'(a), f”(a),... are known
at a value a, then we can approximate f(x) for x close to a via the Taylor
series expansion

11'(a) 21"(a)

F(x) ~ f(a)+(c—a) 2+ (x—aP 2+ (x—2)

3f/;(,")+ O((x—a)*)

» Using Ax = x — a, Taylor series can be equivalently expressed as

fla+ Ax) = f(a) + (A) f’l(-a) + (Ax)2 f”2(!a) + (Ax)3# + 0((Ax)"

Nazar Khan Deep Learning

Taylor Series

Taylor Series Approximation
Examples

» For x around a =0
> osin(x)Rx -4+ -+
AR Rk i o NI

Nazar Khan Deep Learning

Taylor Series

Taylor Series Approximation
Not very useful for x not close to a

— sin(x)
— 3rd order approx. at 0
—— Tth order approx. at 0

The sine function (blue) is closely approximated around 0 by its Taylor
polynomials. The 7th order approximation (green) is good for a full period
centered at 0. However, it becomes poor for [x — 0| > 7.

Nazar Khan Deep Learning

Taylor Series

Taylor Series Approximation

> |t is often convenient to use the first-order Taylor expansion

f(a+ Ax) =~ f(a) + Axf'(a)

or the second order Taylor expansion

Fla+ Ax) ~ £(a) + AxF(a) + %(Ax)Zf”(a)

» In d-dimensional input space

1
f(a+ Ax) = f(a) + Ax"VF + EAxTHAx

where H € R9%9 is the Hessian matrix composed from second derivatives.

02f 02f 02f

Ox10x1 Ox10x2 Ox10x4
02f 0?f 0?f

H= Ox20x1 Ox20x2 Ox20x4
02f 02f 02f

OxqOx1 OxqOx2 OxgOxq

Nazar Khan Deep Learning

Newton's Method

Newton’s Method for finding stationary points

» Starting from ag, we want to find a stationary point of f.

» Instead of actual function f, use a quadratic approximation (second-order
Taylor expansion) of f at ap.

» Find a step Ax such that ag + Ax minimizes the quadratic approximation
of f.

d%x (f(ao) + f'(a0)Ax + ;f”(ao)(Ax)2> -0
f’(ao) + f"(ao)Ax =0

_ f'(a0)

Ax = — f”(ao)

» Move to a; = ap + Ax and repeat the process at a;.

» Continue until convergence to a stationary point aj,.

Nazar Khan Deep Learning

Newton's Method

Newton’s Method for finding stationary points

1.0

f(x) = 6x° — 5x* — 4x3 + 3x2

—0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Nazar Khan Deep Learning

Newton's Method

Newton’s Method for finding stationary points

1.0
f(x) = 6x° — 5x* — 4x3 + 3x2
0.8 -
0.6

0.4 1

Quadratic approximation of fat 0.75

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Nazar Khan Deep Learning

Newton's Method

Newton’s Method for finding stationary points

1.0
f(x) = 6x° — 5x* — 4x3 + 3x2
0.8 -
0.6

0.4 1

Quadratic approximation of fat 1.00

—0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Nazar Khan Deep Learning

Newton's Method

Newton’s Method for finding stationary points

1.0
f(x) = 6x° — 5x* — 4x3 + 3x2
0.8 -
0.6

0.4 1

Quadratic approximation of fat 0.90

—0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Nazar Khan Deep Learning

Newton's Method

Newton’s Method for finding stationary points

f(x) = 6x5 — 5x* — 4x3 + 3x2

1.2

Nazar Khan

Deep Learning

Newton's Method

Newton’'s Method
Role of the 2nd-derivative

> For weights of a neural network, Newton's update corresponds to

2L\t oL
T+ _ 7 =
v <6W2> ow

» In other words, gradient descent learning rate 7 corresponds to inverse of
2nd-derivative.

» Division by 2nd-derivative can also be viewed as normalising the gradient.

» In higher dimensions

wtl=w —H'V,L

The inverse Hessian matrix normalises the gradient vector.

Nazar Khan Deep Learning

Newton's Method

Newton’'s Method
Role of the 2nd-derivative

» Complete Hessian matrix is rarely used because of its size and
computational cost of inverting it.

» Common assumption: diagonal Hessian matrix.

92f
T 0 . 0
0 0°f 0
H _ Ox20x2 e
9*f
0 0 e DD

» Inverse of diagonal matrix is cheap (reciprocal of entries on the diagonal).

Nazar Khan Deep Learning

Quickprop

» Decouple all directions.

» Perform Newton updates in each direction.

2L\ ' oL
T+1 _ T_ (2= i
Wi = <8Wi2> ow;

> Approximate 2nd-derivative numerically by finite difference of
1st-derivatives.

) @’ oL
oL oWl owi|
ow2 "~ Awl 1

!]
» Leads to very fast convergence.

» Some instability where loss is non-convex since everything is based on
assumptions of convexity (quadratic approximation in Newton's method).

Fahlman, An empirical study of learning speed in back-propagation networks.

Nazar Khan Deep Learning

Summary

» For complex and non-convex loss functions of deep networks, vanilla
gradient descent can get stuck in poor local minima and saddle points.

It can also converge very slowly.

>
» Different directions require different learning rates.
» Adaptive learning rates are very important.

>

Next lecture: momentum-based first-order methods.

Nazar Khan Deep Learning

	GD
	Rprop
	Taylor Series
	Newton's Method
	Quickprop

