
CS-568 Deep Learning

Gradient Descent Variations

Nazar Khan
Department of Computer Science

University of the Punjab

GD Rprop Taylor Series Newton’s Method Quickprop

So far . . .

I Neural Networks are universal approximators.
I Backpropagation allows computation of derivatives in hidden layers.
I Gradient descent finds weights corresponding to local minimum of loss

surface.
I In this lecture: alternative methods of finding local minima of loss surface.

I First-order methods
I Rprop

I Second-order methods
I Taylor series approximation
I Newton’s method
I Quickprop

I Next lecture:
I Momentum-based first-order methods

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Gradient Descent in Higher Dimensions

I Let ∆wτ+1 denote the step at time τ + 1.

w τ+1 = w τ + ∆w τ+1

I For gradient descent

∆wτ+1 = −η∇τwL

I For gradient descent in 1D,

∆w τ+1 = −η dL

dw

∣∣∣∣
τ

The only issue is determining learning rate η.

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

−1 −0.5 0 0.5 1 −1
0

1
−1.5

−1

−0.5

0

x
y

f (x , y) = − exp
(
−(3

4x)2 − (5
4y)2)

−2 · 10−1−2 · 10−1

−2 · 10−1−2 · 10
−1

−3 · 10−1 −3 · 10
−1

−3 · 10−1
−3 · 10−1

−4 · 10−1 −4 · 10
−1

−4 · 10−1 −4 · 10−1

−5 · 10−1 −5 · 1
0−

1

−5 · 10−
1 −5 · 10−1

−6 · 10−1

−
6
· 1

0
−

1

−6 · 10−1 −6 · 1
0−

1

−7 · 10−
1

−
7 · 10 −

1

−7 · 10−1

−
7 · 10 −

1

−8 · 10 −1 −8 · 1
0−

1

−8 · 10−1

−9 · 10−1

−9 · 10−1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

Iso-contours of f (x , y)

A function that changes faster in y -direction.

I In higher dimensions, if
∣∣∣ ∂L∂wi

∣∣∣ >> ∣∣∣ ∂L∂wj

∣∣∣ then using the same η can result
in overshooting in the direction of wi and very slow convergence in the
direction of wj .

I Solution: separate learning rate ηi for each direction wi .

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Resilient Propagation (Rprop)

I In Rprop1, each direction is handled independently.
I Increase learning rate for direction i if current derivative has same sign as

previous derivative.
I Otherwise, you just overshot a minimum.

I So go back to previous location.
I Decrease learning rate for that direction.
I Update parameter with this smaller step.

ηi =


αηi if ∂L

∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

> 0

βηi if ∂L
∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

< 0

ηi otherwise

I Hyperparameters should follow the constraint α > 1 and β < 1.
1Riedmiller and Braun, ‘A direct adaptive method for faster backpropagation learning:

The RPROP algorithm’.
Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Resilient Propagation (Rprop)

I Typical values are α = 1.2 and β = 0.5.
I Increase learning rate slowly but decrease quickly when you overshoot.

I In practice, learning rates are bounded via ηmin and ηmax.

ηi =


min(αηi , ηmax) if ∂L

∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

> 0

max(βηi , ηmin) if ∂L
∂wi

∣∣∣
τ
∗ ∂L
∂wi

∣∣∣
τ−1

< 0

ηi otherwise

I Rprop converges much faster than gradient descent.
I But it works well when derivatives are accumulated over large batches.

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Taylor Series Approximation

I If values of a function f (a) and its derivatives f ′(a), f ′′(a), . . . are known
at a value a, then we can approximate f (x) for x close to a via the Taylor
series expansion

f (x) ≈ f (a)+(x−a)1 f
′(a)

1!
+(x−a)2 f

′′(a)

2!
+(x−a)3 f

′′′(a)

3!
+O((x−a)4)

I Using ∆x = x − a, Taylor series can be equivalently expressed as

f (a + ∆x) ≈ f (a) + (∆x)1 f
′(a)

1!
+ (∆x)2 f

′′(a)

2!
+ (∆x)3 f

′′′(a)

3!
+ O((∆x)4)

=
∞∑
n=0

1
n!
f n(a)(∆x)n

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Taylor Series Approximation
Examples

I For x around a = 0
I sin(x) ≈ x − x3

3! + x5

5! −
x7

7! + . . .

I ex ≈ 1 + x1

1! + x2

2! + x3

3! + x4

4! + . . .

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Taylor Series Approximation
Not very useful for x not close to a

−6 −4 −2 2 4 6

−4

−2

2

4
sin(x)

3rd order approx. at 0
7th order approx. at 0

The sine function (blue) is closely approximated around 0 by its Taylor
polynomials. The 7th order approximation (green) is good for a full period
centered at 0. However, it becomes poor for |x − 0| > π.

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Taylor Series Approximation

I It is often convenient to use the first-order Taylor expansion

f (a + ∆x) ≈ f (a) + ∆xf ′(a)

or the second order Taylor expansion

f (a + ∆x) ≈ f (a) + ∆xf ′(a) +
1
2

(∆x)2f ′′(a)

I In d-dimensional input space

f (a + ∆x) ≈ f (a) + ∆xT∇f +
1
2

∆xTH∆x

where H ∈ Rd×d is the Hessian matrix composed from second derivatives.

H =


∂2f

∂x1∂x1
∂2f

∂x1∂x2
. . . ∂2f

∂x1∂xd
∂2f

∂x2∂x1
∂2f

∂x2∂x2
. . . ∂2f

∂x2∂xd
...

...
. . .

...
∂2f

∂xd∂x1
∂2f

∂xd∂x2
. . . ∂2f

∂xd∂xd


Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Newton’s Method for finding stationary points

I Starting from a0, we want to find a stationary point of f .
I Instead of actual function f , use a quadratic approximation (second-order

Taylor expansion) of f at a0.
I Find a step ∆x such that a0 + ∆x minimizes the quadratic approximation

of f .

d

d∆x

(
f (a0) + f ′(a0)∆x +

1
2
f ′′(a0)(∆x)2

)
= 0

f ′(a0) + f ′′(a0)∆x = 0

∆x = − f ′(a0)

f ′′(a0)

I Move to a1 = a0 + ∆x and repeat the process at a1.
I Continue until convergence to a stationary point an.

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Newton’s Method for finding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Newton’s Method for finding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Quadratic approximation of f at 0.75

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Newton’s Method for finding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Quadratic approximation of f at 1.00

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Newton’s Method for finding stationary points

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
f(x) = 6x5 5x4 4x3 + 3x2

Quadratic approximation of f at 0.90

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Newton’s Method for finding stationary points

0.6 0.7 0.8 0.9 1.0 1.1 1.2

f(x) = 6x5 5x4 4x3 + 3x2

a0 a1a2a3

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Newton’s Method
Role of the 2nd-derivative

I For weights of a neural network, Newton’s update corresponds to

w τ+1 = w τ −
(
∂2L

∂w2

)−1
∂L

∂w

I In other words, gradient descent learning rate η corresponds to inverse of
2nd-derivative.

I Division by 2nd-derivative can also be viewed as normalising the gradient.
I In higher dimensions

wτ+1 = wτ −H−1∇wL

The inverse Hessian matrix normalises the gradient vector.

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Newton’s Method
Role of the 2nd-derivative

I Complete Hessian matrix is rarely used because of its size and
computational cost of inverting it.

I Common assumption: diagonal Hessian matrix.

H =


∂2f

∂x1∂x1
0 . . . 0

0 ∂2f
∂x2∂x2

. . . 0
...

...
. . .

...
0 0 . . . ∂2f

∂xd∂xd


I Inverse of diagonal matrix is cheap (reciprocal of entries on the diagonal).

Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Quickprop

I Decouple all directions.
I Perform Newton updates in each direction.

w τ+1
i = w τ

i −
(
∂2L

∂w2
i

)−1
∂L

∂wi

I Approximate 2nd-derivative numerically by finite difference of
1st-derivatives.

∂2L

∂w2
i

≈
∂L
∂wi

∣∣∣
τ
− ∂L

∂wi

∣∣∣
τ−1

∆w τ−1
i

I Leads to very fast convergence.
I Some instability where loss is non-convex since everything is based on

assumptions of convexity (quadratic approximation in Newton’s method).

Fahlman, An empirical study of learning speed in back-propagation networks.
Nazar Khan Deep Learning

GD Rprop Taylor Series Newton’s Method Quickprop

Summary

I For complex and non-convex loss functions of deep networks, vanilla
gradient descent can get stuck in poor local minima and saddle points.

I It can also converge very slowly.
I Different directions require different learning rates.
I Adaptive learning rates are very important.
I Next lecture: momentum-based first-order methods.

Nazar Khan Deep Learning

	GD
	Rprop
	Taylor Series
	Newton's Method
	Quickprop

