CS-563 Deep Learning

Matrix and Vector Calculus

Nazar Khan
Department of Computer Science
University of the Punjab

Matrix Calculus

- ► Specialised notation for multivariate calculus.
- Simplifies operations such as finding the minimum of a multivariate function.
- ► Different conventions exist. You may choose any as long as you remain consistent.
- ▶ Purpose of these slides is to set the convention for the rest of the course.

Notation

- ► Scalars are denoted by lower-case letters like s, a, b.
- ▶ Vectors are denoted by lower-case bold letters like x, y, v.
- ► Matrices are denoted by upper-case bold letters like M, D, A.
- ▶ Any vector $\mathbf{x} \in \mathbb{R}^d$ is by default a column vector.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

▶ The corresponding row vector is obtained as $\mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix}$.

Vectors

For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and $\mathbf{z} \in \mathbb{R}^k$

- ▶ Inner product $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_d y_d$ is a scalar value. Also called dot product or scalar product.
- ▶ Other representations: $x \cdot y$, (x, y) and $(x, y) \cdot x$.
- Represents similarity of vectors.
 - If $\mathbf{x}^T \mathbf{y} = 0$, then \mathbf{x} and \mathbf{y} are orthogonal vectors (in 2D, this means they are perpendicular).
- ► Euclidean norm of vector

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^T \mathbf{x}} = \sqrt{x_1 x_1 + x_2 x_2 + \dots + x_d x_d}$$

represents the magnitude of the vector.

- ► Unit vector has norm 1. Also called normalised vector.
- ▶ If $\|\mathbf{x}\| = 1$ and $\|\mathbf{y}\| = 1$, and $\mathbf{x}^T \mathbf{y} = 0$, then \mathbf{x} and \mathbf{y} are *orthonormal* vectors.
- ▶ Outer-product xz^T is a $d \times k$ matrix.

Matrix and Vector Calculus

For scalars $x, y \in \mathbb{R}$, vectors $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{y} \in \mathbb{R}^k$ and matrices $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$, we will use the following conventions for writing matrix and vector derivatives.

Scalar w.r.t vector:
$$\nabla_{\mathbf{x}} y = \frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \cdots & \frac{\partial y}{\partial x_d} \end{bmatrix}$$

Vector w.r.t scalar: $\nabla_{\mathbf{x}} \mathbf{y} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial \mathbf{x}} \\ \frac{\partial y_2}{\partial \mathbf{x}} \\ \vdots \\ \frac{\partial y_k}{\partial \mathbf{x}} \end{bmatrix}$

Vector w.r.t scalar:
$$\nabla_{\mathbf{x}}\mathbf{y} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \\ \vdots \\ \frac{\partial y_k}{\partial \mathbf{x}} \end{bmatrix}$$

Vector w.r.t vector: $\nabla_{\mathbf{x}}\mathbf{y} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \nabla_{\mathbf{x}}\mathbf{y}_1 \\ \nabla_{\mathbf{x}}\mathbf{y}_2 \\ \vdots \\ \nabla_{\mathbf{x}}\mathbf{y}_k \end{bmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_d} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_k}{\partial x_1} & \frac{\partial y_k}{\partial x_2} & \cdots & \frac{\partial y_k}{\partial x_d} \end{bmatrix}$

Matrix and Vector Calculus

Scalar w.r.t matrix:
$$\nabla_{\mathbf{X}} y = \frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{m1}} \\ \frac{\partial y}{\partial x_{12}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{1n}} & \frac{\partial y}{\partial x_{2n}} & \cdots & \frac{\partial y}{\partial x_{mn}} \end{bmatrix}$$

$$\mathsf{Matrix}\;\mathsf{w.r.t}\;\mathsf{scalar};\;\nabla_{\mathsf{x}}\mathbf{Y} = \frac{\partial\mathbf{Y}}{\partial x} = \begin{bmatrix} \frac{\partial y_{11}}{\partial x} & \frac{\partial y_{12}}{\partial x} & \dots & \frac{\partial y_{1n}}{\partial x} \\ \frac{\partial y_{21}}{\partial x} & \frac{\partial y_{22}}{\partial x} & \dots & \frac{\partial y_{2n}}{\partial x} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{m1}}{\partial x} & \frac{\partial y_{m2}}{\partial x} & \dots & \frac{\partial y_{mn}}{\partial x} \end{bmatrix}$$

Matrix and Vector Calculus

For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and matrices $\mathbf{M} \in \mathbb{R}^{k \times d}$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$

$$\nabla_{\mathbf{x}}(\mathbf{y}^T\mathbf{x}) = \nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{y}) = \mathbf{y}^T$$

 $ightharpoonup
abla_{x}(Mx) = M$ $\nabla_{\mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) = \mathbf{x}^T (\mathbf{A}^T + \mathbf{A})$

For symmetric
$$\mathbf{A}$$
, $\nabla_{\mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x}) = 2(\mathbf{A} \mathbf{x})^T$

Prove all of the derivatives given above.