CS-563 Deep Learning

Training a Perceptron

Nazar Khan
Department of Computer Science
University of the Punjab

What is training?

AND			OR			
<i>X</i> ₂	t		x_1	x_2	t	
0	0		0	0	0	
1	0		0	1	1	
0	0		1	0	1	
1	1		1	1	1	
	0 1	$ \begin{array}{c cc} x_2 & t \\ \hline 0 & 0 \\ 1 & 0 \end{array} $	$ \begin{array}{c cccc} x_2 & t \\ \hline 0 & 0 \\ 1 & 0 \end{array} $	$\begin{array}{c cc} x_2 & t \\ \hline 0 & 0 \\ 1 & 0 \\ \end{array} \begin{array}{c cc} x_1 \\ \hline 0 \\ 0 \\ \end{array}$	$\begin{array}{c cccc} x_2 & t & & & x_1 & x_2 \\ \hline 0 & 0 & & & 0 \\ 1 & 0 & & 0 & 1 \\ \end{array}$	

Find weights \mathbf{w} and bias b that maps input vectors \mathbf{x} to given targets t.

- \blacktriangleright A perceptron is a function $f: \mathbf{x} \to t$ with parameters \mathbf{w}, b .
- ▶ Formally written as $f(\mathbf{x}; \mathbf{w}, b)$.
- ► Training corresponds to minimizing a loss function.
- ► So let's take a detour to understand function minimization.

Minimization

What is the slope/derivative/gradient at the minimizer $x^* = 0$?

Minimization Local vs. Global Minima

- ► Stationary point: where derivative is 0.
- ► A stationary point can be a minimum or a maximum.
- ► A minimum can be local or global. Same for maximum.

Gradient Descent

Gradient is the direction, in input space, of maximum rate of increase of a function.

$$f\left(x+\frac{df}{dx}\right)\geq f(x)$$

respect to x, move in negative gradient direction.

▶ To minimize function f(x) with

$$x^{\text{new}} = x^{\text{old}} - \left. \frac{df}{dx} \right|_{x^{\text{old}}}$$

▶ Try it! Start from $x^{\text{old}} = -1$. Do you notice any problem?

Minimization via Gradient Descent

▶ To minimize loss $L(\mathbf{w})$ with respect to weights \mathbf{w}

$$\mathbf{w}^{\mathsf{new}} = \mathbf{w}^{\mathsf{old}} - \eta
abla_{\mathbf{w}} \mathit{L}(\mathbf{w})$$

where scalar $\eta>0$ controls the step-size. It is called the *learning rate*.

► Also known as gradient descent.

Repeated applications of gradient descent find the closest local minimum.

Gradient Descent

- 1. Initialize w^{old} randomly.
- **2**. do
 - 2.1 $\mathbf{w}^{\mathsf{new}} \leftarrow \mathbf{w}^{\mathsf{old}} \eta |\nabla_{\mathbf{w}} L(\mathbf{w})|_{\mathbf{wold}}$

Gradient Descent

- **3.** while $|L(\mathbf{w}^{\text{new}}) L(\mathbf{w}^{\text{old}})| > \epsilon$
- ightharpoonup Learning rate η needs to be reduced gradually to ensure convergence to a local minimum.
- ▶ If η is too large, the algorithm can *overshoot* the local minimum and keep doing that indefinitely (oscillation).
- ▶ If η is too small, the algorithm will take too long to reach a local minimum.

Gradient Descent

Different types of gradient descent:

Batch
$$\mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} - \eta \nabla_{\mathbf{w}} L$$

Sequential $\mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} - \eta \nabla_{\mathbf{w}} L_n$
Stochastic same as sequential but n is chosen randomly Mini-batches $\mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} - \eta \nabla_{\mathbf{w}} L_{\mathcal{B}}$

Most common variations are stochastic gradient descent (SGD) and SGD using mini-batches.

Perceptron Algorithm Two-class Classification

- ▶ Let (\mathbf{x}_n, t_n) be the *n*-th training example pair.
- ▶ Mathematical convenience: replace Boolean target (0/1) by binary target (-1/1).

AND			OR			
x_2	t		x_1	x_2	t	
0	-1		0	0	$\overline{-1}$	
1	-1		0	1	1	
0	-1		1	0	1	
1	1		1	1	1	
	0 1	$\begin{array}{c cc} x_2 & t \\ \hline 0 & -1 \\ 1 & -1 \\ \end{array}$	$\begin{array}{c cc} x_2 & t \\ \hline 0 & -1 \\ 1 & -1 \\ \end{array}$	$\begin{array}{c cccc} x_2 & t & & x_1 \\ \hline 0 & -1 & & 0 \\ 1 & -1 & & 0 \\ \end{array}$	$\begin{array}{c cccc} x_2 & t & & x_1 & x_2 \\ \hline 0 & -1 & & 0 & 0 \\ 1 & -1 & & 0 & 1 \\ \end{array}$	

Do the same for perceptron output.

$$y(\mathbf{x}_n) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x}_n + b \ge 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_n + b < 0 \end{cases}$$

wo-class Classification

- Notational convenience: append b at the end of w and append 1 at the end of x_n to write pre-activation simply as $w^T x_n$.
- ► A perceptron classifies its input via the non-linear step function

$$y(\mathbf{x}_n) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x}_n \ge 0 \\ -1 & \text{if } \mathbf{w}^T \mathbf{x}_n < 0 \end{cases}$$

▶ Perceptron criterion: $\mathbf{w}^{T}\mathbf{x}_{n}t_{n} > 0$ for correctly classified point.

Perceptron Algorithm

Two-class Classification

▶ Loss can be defined on the set $\mathcal{M}(\mathbf{w})$ of misclassified points.

$$L(\mathbf{w}) = \sum_{n \in \mathcal{M}(\mathbf{w})} -\mathbf{w}^{\mathsf{T}} \mathbf{x}_n t_n$$

▶ Optimal w minimizes the value of the loss function L(w).

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} L(\mathbf{w})$$

Gradient is computed as

$$\nabla_{\mathbf{w}} L(\mathbf{w}) = \sum_{n \in \mathcal{M}(w)} -\mathbf{x}_n t_n$$

- ► Optimal w* can be learned via gradient descent.
- ► Corresponds to the following rule at the *n*-th training sample *if it is misclassified*.

$$\mathbf{w}^{\mathsf{new}} = \mathbf{w}^{\mathsf{old}} + \mathbf{x}_n t_n$$

- ► Known as the *perceptron learning rule*.
- ► For *linearly separable data*, perceptron learning is guaranteed to find the decision boundary in finite iterations.
 - ► Try it for the AND or OR problems.
- ► For data that is *not linearly separable*, this algorithm will never converge.
 - ► Try it for the XOR problem.

Perceptron Algorithm Weaknesses

► Only works if training data is linearly separable.

- ► Cannot be generalized to MLPs.
 - ▶ Because t_n will be available for output perceptron only.
 - ► Hidden layer perceptrons will have no intermediate targets.

Summary

▶ Perceptron training corresponds to minimizing a loss function.

- Gradient at minimum of a function is zero.
- ► Gradient descent: to find minimum, repeatedly move in negative of the gradient direction.
- ► Perceptron training algorithm only works if training data is linearly separable.
 - Cannot be generalized to MLPs.
- ▶ Next lecture: loss and activation functions for ML.