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Dynamic Data RNN Fprop Variations Benefit of Recurrence Stability

Everything should be made as simple as possible,
but no simpler.
Albert Einstein

Understanding Recurrent Neural Networks requires some effort and a cor-
rect perspective. Do not expect them to be as simple as linear regression.
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Static vs. Dynamic Inputs

I Static signals, such as an image, do not change over time.
I Ordered with respect to space.
I Output depends on current input.

I Dynamic signals, such as text, audio, video or stock price change over
time.
I Ordered with respect to time.
I Output depends on current input as well as past (or even future) inputs.
I Also called temporal, sequential or time-series data.
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Context in Text

The Taj ____ was commissioned by Shah Jahan in 1631, to
be built in the memory of ___ wife Mumtaz Mahal, who died
on 17 June that year, giving birth to their 14th child, Gauhara
Begum. Construction started in 1632, and the mausoleum was
completed ___ 1643.
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Context in Video
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Context in Audio

Nazar Khan Deep Learning



Dynamic Data RNN Fprop Variations Benefit of Recurrence Stability

Time-series Data

I A single input will be a series of vectors x1, x2, . . . , xT .
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Input component at time t forward propagated through a network.
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Representational Shortcut 1 – Space Folding
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Each box represents a layer of neurons.
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Recurrent Neural Networks
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I A recurrent neural network (RNN) makes hidden state at time t directly
dependent on the hidden state at time t − 1 and therefore indirectly on all
previous times.

I Output yt depends on all that the network has already seen so far.
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Representational Shortcut 2 – Time Folding
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Recurrent Neural Networks

3 sets of
weights
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11 y(t) = f (

a1(t)︷ ︸︸ ︷
W 1h(t) + b1)

h(t) = tanh(W 0x(t) +W 11h(t−1) + b0︸ ︷︷ ︸
a0(t)

)
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Sequence Mappings

One-to-many Many-to-one

Messi jumping over Marcello

kill

Hate speech

all XLet's

Image caption generation Sentiment classification
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Sequence Mappings

Many-to-many Many-to-many delayed

He

Pronoun Verb Adjective

is crazy He

Está

is crazy

loco

POS tagging Language translation
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Loss Functions for Sequences

I For recurrent nets, loss is between series of output and target vectors.
That is L({y(1), . . . , y(T )}, {t(1), . . . , t(T )}).

Loss/divergence function

Forward propagation in an RNN unfolded in time.
I Notice that loss L can be computed only after y(T ) has been computed.

Nazar Khan Deep Learning



Dynamic Data RNN Fprop Variations Benefit of Recurrence Stability

Loss Functions for Sequences

I Loss is not necessarily decomposable.
I In the following, we will assume decomposable loss
L =

∑T
t=1 L(y(t), t(t)).

I In both cases, as long as ∂L
∂y(t) has been computed, backpropagation can

proceed.

Loss/divergence function
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Forward Propagation Through Time

Loss/divergence function

Forward propagation in an RNN unfolded in time. Recurrence between hidden
states through pre-activation a(t) is shown in red.
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Forward Propagation Through Time

Loss/divergence function

Forward propagation in an RNN unfolded in time. Recurrence between hidden
states through pre-activation a(t) is shown in red.

Nazar Khan Deep Learning



Dynamic Data RNN Fprop Variations Benefit of Recurrence Stability

Notational Clarity

I At layer l , we will denote the
pre-activation by al and activation by hl .

I So output layer y will be denoted by hL in
an L-layer network.

I Input will be denoted by h0.
I So forward propagation entails h0 →

a1 → h1︸ ︷︷ ︸
layer 1

· · · → aL−1 → hL−1︸ ︷︷ ︸
layer L−1

→ aL → hL︸ ︷︷ ︸
layer L

.

I For 2 layer network

h2,T = f (a2,T )

a2,T = W 1h1,T + b1

h1,T = tanh(a1,T )

a1,T = W 0h0,T +W 11h1,T−1 + b0
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Notational Clarity

Loss/divergence function
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RNN Variations

1 hidden state 2 hidden states Skip connections Bidirectional
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Bidirectional RNN

Step 1: Forward propagation into the future

fprop

h0(1),h0(2), . . . ,h0(T )︸ ︷︷ ︸
input sequence

;h1
f (0)︸ ︷︷ ︸
init

,W 0
f ,b

0
f ,W

11
f ,W 1

f ,b
1
f︸ ︷︷ ︸

parameters


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Bidirectional RNN

Step 2: Forward propagation into the past

fprop

h0(T ),h0(T − 1), . . . ,h0(1)︸ ︷︷ ︸
input sequence

;h1
b(T + 1)︸ ︷︷ ︸

init

,W 0
b ,b

0
b,W

11
b ,W 1

b ,b
1
b︸ ︷︷ ︸

parameters


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Bidirectional RNN

Step 3: Fusion of forward and backward hidden states

h2(t) = tanh(a2(t))

a2(t) = W 1
f h1(t)

f + b1
f +W 1

b h1(t)
b + b1

b
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Benefit of Recurrent Architectures
n-bit addition

MLP

3-bit number 3-bit number

4-bit sum

I Only for n-bit numbers
I Training set exponential in n

I Training errors

Bit 1 Bit 2

+
Carry

bit

I Iterative application to numbers of
arbitrary size

I Exact answers
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Benefit of Recurrent Architectures
n-bit XOR

MLP

5-bit number

XOR

I Only for n-bit numbers
I Training set exponential in n

I Training errors

Next Bit

+

I Iterative application to numbers of
arbitrary size

I Exact answer
I Will be 1 for odd number of ones

in input.
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Stability issues

I Even a 1-hidden layer RNN is a very deep network.
I Viewed in time, an RNN is as deep as the number of time steps.
I Suffers from vanishing gradients.
I Also suffers from exploding gradients.
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Exploding Gradients

I Consider input x(1) at time 1 and assume linear hidden layer.
I At time t, the RNN carries a term of the form

W 11 . . .W 11W 0x(1) =
(
W 11)t−1

W 0x(1)

which is an M-dimensional vector.
I Magnitude of this vector depends on largest eigenvalue λmax of W 11.

I λmax > 1 =⇒ magnitude of
(
W 11

)t−1
W 0x(1) keeps increasing.

I λmax < 1 =⇒ magnitude of
(
W 11

)t−1
W 0x(1) keeps decreasing.
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Exploding Gradients

I Even during forward propagation, depending on the largest eigenvalue of
the recurrent weight matrix W 11, input at time t
I is either forgotten very soon,
I or explodes to very large values.

I Similar case for backpropagation.
I Notice that this has nothing to do with the choice of activation function.
I Information will explode or vanish through time.
I Similar behaviour for non-linear neurons.
I So, in practice, RNNs do not have long-term memory. Solution: LSTM.
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Summary

I Dynamic signals that change over time can be modeled by RNNs.
I RNNs can represent mappings of one-to-many, many-to-one,

many-to-many, and many-to-many delayed sequences.
I Previous hidden layer output influences subsequent output.
I Forward propagation is through space as well as time.
I Forward propagation can be into the future and/or into the past.
I Recurrent connection implies really deep network.
I Information can vanish or even explode through time.
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