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Previously: Decoder with attention

I An attention-based decoder decides which part of the input encoding to
focus on.
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I Decoding emphasizes different parts of the encodings.
I In this lecture, we will study how encodings can be computed with

attention as well.
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This lecture: Encoder with attention aka Transformer1

I A sequence-to-sequence model without convolution and without
recurrence.

I Recurrence is a sequential process – cannot be parallelized.
I Transformer contains parallelizable modules and can therefore be trained

faster.
I Transformers achieve state-of-the-art performance on sequence modelling

tasks.

1Ashish Vaswani et al. ‘Attention is All You Need’. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. NIPS’17. Long Beach,
California, USA, 2017, 6000–6010.
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Self-attention

Zaid slapped Khalid

Self-attention

We will assume 512-dimensional input embeddings x(t) as well as
512-dimensional encodings z(t).
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Self-attention

1. Place embeddings of all words in a matrix E ∈ R512×T in
.

2. Consider 3 learnable matrices WQ ,WK ∈ R64×512 and WV ∈ R512×512

and apply linear transformations

Q = WQE ∈ R64×T in

K = WKE ∈ R64×T in

V = WVE ∈ R512×T in

to each word. Parallelizable in time.
3. Compute similarity scores between the representations in Q and K .

S = row-wise softmax
(
QTK√

64

)
∈ RT in×T in
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Self-attention

4. Compute the encoding of each word

Z = VST ∈ R512×T in

where each column of Z is a 512-dimensional encoding of the
corresponding word.

Note that each word has now been encoded by attending to all words
in the sentence.

The scaled dot-product scores in S are the attention weights.
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Self-attention
Additional details

Self-attention

Zaid slapped Khalid

LayerNorm LayerNorm LayerNorm
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Multi-headed attention

I Replicate 8 self-attention modules, each with its own learnable matrices
WQi ,WKi ,WVi .

I Compute encodings Z1, . . . ,Z8.
I Compute final encoding Z by concatenating the Zi and projecting onto

512-dimensional space using another learnable matrix WO ∈ R512×(512∗8).

Z = WO


Z1
Z2
...
Z8


I This way, the model can learn 8 different ways of encoding the input

sentence.
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Feed-forward NN

I Pass each encoding in Z through the same 2-layer network.

E = W2 ∗ ReLU(W1Z + b11T ) + b21T

where W1 has 2048 rows and W2 has 512 rows.
I Add residual connection.

E = W2 ∗ ReLU(W1Z + b11T ) + b21T+Z

I Perform LayerNorm on each column of E .
I Parallelizable in time.
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Stacked Encoders

I An encoder involves the transformation

Embeddings −→ Self-attention −→ FFNN −→ Encodings

I Encoders can be stacked on top of each other.
I Encoding produced by one encoder becomes the input embedding for the

next encoder.
I Final encoded output is the result of the last encoder.
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From Encoder to Decoder

Linear + Softmax
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Inside a Decoder
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Decoder and the future

Self-attention in decoder attends only to the words generated so far in
the output sequence. Achieved by setting future times to −∞ in the
softmax.
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Summary

I Transformers represent the state of the art in deep learning architectures.
I Key progress is due to self-attention – representation of token at any time

depends on tokens at all other times.
I Complete input sequence observed in one go. Therefore, long-term context.
I No sequential processing. Therefore, parallelizable and fast.

I Regularization through layer normalization to retain parallelism.
I Multiple attention heads for attending in different ways.
I Positional encoding to exploit sequential order.
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