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Previously: Decoder with attention

> An attention-based decoder decides which part of the input encoding to
focus on.
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Decoder

» Decoding emphasizes different parts of the encodings.

» In this lecture, we will study how encodings can be computed with
attention as well.
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This lecture: Encoder with attention aka Transformer!

> A sequence-to-sequence model without convolution and without
recurrence.

» Recurrence is a sequential process — cannot be parallelized.

» Transformer contains parallelizable modules and can therefore be trained
faster.

» Transformers achieve state-of-the-art performance on sequence modelling
tasks.

! Ashish Vaswani et al. ‘Attention is All You Need'. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. NIPS'17. Long Beach,
California, USA, 2017, 6000-6010.
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Self-attention
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We will assume 512-dimensional input embeddings x(!) as well as

512-dimensional encodings z(1).
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Self-attention

1. Place embeddings of all words in a matrix E € R512xT™"

2. Consider 3 learnable matrices Wq, Wi € RO4*512 and Wy, € R312x512
and apply linear transformations
Q _ WQE c R64><Ti"
K = WKE € R%*T"
V = WVE c R512><Ti"
to each word. Parallelizable in time.
3. Compute similarity scores between the representations in @ and K.
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S = row-wise softmax <
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Self-attention
4. Compute the encoding of each word
7 = VST c RrS12x Tin

where each column of Z is a 512-dimensional encoding of the
corresponding word.

,

Note that each word has now been encoded by attending to all words
in the sentence.

The scaled dot-product scores in S are the attention weights.
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Self-attention
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Multi-headed attention

>

Replicate 8 self-attention modules, each with its own learnable matrices
Wi, Wki, Wy;.
Compute encodings Z1,. .., Zg.

Compute final encoding Z by concatenating the Z; and projecting onto
512-dimensional space using another learnable matrix Wy € R512%(512+8)

Z3
This way, the model can learn 8 different ways of encoding the input
sentence.
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Feed-forward NN

» Pass each encoding in Z through the same 2-layer network.
E =W, ReLUW;LZ +bi17) +byl”

where W, has 2048 rows and W5 has 512 rows.
» Add residual connection.

E=WysReLUWLZ +b117) + b1 +Z

» Perform LayerNorm on each column of E.
» Parallelizable in time.
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Stacked Encoders

» An encoder involves the transformation
Embeddings — Self-attention — FFNN — Encodings

» Encoders can be stacked on top of each other.

» Encoding produced by one encoder becomes the input embedding for the
next encoder.

» Final encoded output is the result of the last encoder.
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From Encoder to Decoder

I Linear + Softmax
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Inside a Decoder

FFNN FENNJ H|{ FENN FFNN

Self-attention
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Decoder and the future

Self-attention in decoder attends only to the words generated so far in
the output sequence. Achieved by setting future times to —oo in the
softmax.
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Summary

» Transformers represent the state of the art in deep learning architectures.

> Key progress is due to self-attention — representation of token at any time
depends on tokens at all other times.

» Complete input sequence observed in one go. Therefore, long-term context.
> No sequential processing. Therefore, parallelizable and fast.

» Regularization through layer normalization to retain parallelism.
> Multiple attention heads for attending in different ways.

> Positional encoding to exploit sequential order.
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