

CS-566 Deep Reinforcement Learning

Improved Policy-Based Learning IV: Deterministic Policy Gradient

Nazar Khan
Department of Computer Science
University of the Punjab

Deterministic Policy Gradient¹ (DPG)

Actor-Critic recap:

- ▶ Actor-critic methods combine policy and value learning
- ▶ Can reduce variance and improve learning performance

Idea behind deterministic policy gradient:

- ▶ Learn a value function $Q_\phi(s, a)$
- ▶ Use it as a differentiable target to optimize the policy
- ▶ Policy *follows* the value function

¹ silver2014deterministic.

Deterministic Policy Gradient Objective

Collect data D and train a value network $Q_\phi(s, a)$.

Then optimize a deterministic policy $\pi_\theta(s)$ via:

$$J(\theta) = \mathbb{E}_{s \sim D} \left[\sum_{t=0}^T Q_\phi(s, \pi_\theta(s)) \right]$$

Chain rule gives:

$$\nabla_\theta J(\theta) = \sum_{t=0}^T \nabla_a Q_\phi(s, a) \cdot \nabla_\theta \pi_\theta(s)$$

Interpretation:

- ▶ Train $Q_\phi(s, a)$ from experience
- ▶ Update policy in the direction of actions with higher value
- ▶ 'Let the policy follow the value network'

Motivation for DDPG

Goal: Extend value-based deep RL (like DQN) to **continuous action spaces**.
Challenge in continuous spaces:

$$a^*(s) = \arg \max_a Q^*(s, a) \quad \text{is hard!}$$

DDPG solution:

- ▶ Use the gradient of $Q(s, a)$ w.r.t. the action to approximate $\max_a Q(s, a)$
- ▶ Deterministic policy actor: $\pi_\theta(s)$
- ▶ Critic estimates $Q_\phi(s, a)$

Based on:

- ▶ Deterministic policy gradient²
- ▶ NFQCA³

²silver2014deterministic.

³hafner2011reinforcement.

DDPG Algorithm Pseudocode

Randomly initialize critic network $Q_\phi(s, a)$ and actor $\pi_\theta(s)$ with weights ϕ and θ .

Initialize target network Q' and π' with weights $\phi' \leftarrow \phi$, $\theta' \leftarrow \theta$

Initialize replay buffer R

for episode = 1 ... M **do**

 Initialize a random process \mathcal{N} for action exploration

 Receive initial observation state s_1

for t = 1 ... T **do**

$a_t = \pi_\theta(s_t) + \mathcal{N}_t$ according to the current policy and exploration noise

 Execute action a_t and observe reward r_t and observe new state s_{t+1}

 Store transition (s_t, a_t, r_t, s_{t+1}) in R

 Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

 Set $y_i = r_i + \gamma Q_{\phi'}(s_{i+1}, \pi_{\theta'}(s_{i+1}))$

 Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q_\phi(s_i, a_i))^2$

 Update the actor policy using the sampled policy gradient:

$$\nabla_\theta J \approx \frac{1}{N} \sum_i \nabla_a Q_\phi(s, a)|_{s=s_i, a=\mu(s_i)} \nabla_\theta \pi_\theta(s)|_{s_i}$$

DDPG Algorithm Pseudocode

Update the target networks:

$$\phi' \leftarrow \tau\phi + (1 - \tau)\phi'$$

$$\theta' \leftarrow \tau\theta + (1 - \tau)\theta'$$

end for

end for

DDPG Algorithm Overview

DDPG characteristics:

- ▶ Actor-critic, model-free
- ▶ Continuous actions
- ▶ Off-policy learning
- ▶ Replay buffer (like DQN)
- ▶ Target networks for stability (like DQN)

DDPG showed strong performance on physics control tasks:

- ▶ CartPole, Gripper, Walker, Car driving
- ▶ Learns from pixels in some settings

Key idea: Use deterministic policy + learned Q gradient to update actor.

DDPG Resources

Implementations:

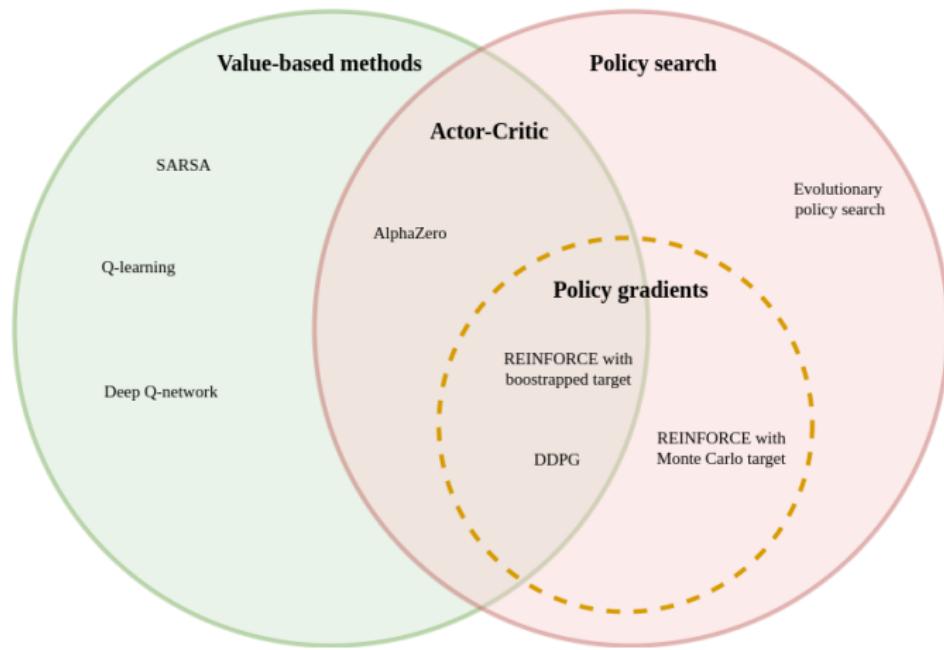
- ▶ Spinning Up (spinningup.openai.com)
- ▶ Stable-Baselines (stable-baselines.readthedocs.io)
- ▶ Original paper⁴

DDPG Summary:

- ▶ Bridges DQN ideas into continuous control
- ▶ Strong baseline in robotics and physics simulators
- ▶ Foundation for later methods (TD3, SAC)

⁴[lillicrap2015continuous](https://arxiv.org/abs/1509.02971).

Value vs Policy vs Actor-Critic



Value-based, policy-based, and actor-critic methods⁵.

⁵ moerland2021lecture.