CS-566 Deep Reinforcement Learning

Learned Model-Based Learning

Nazar Khan
Department of Computer Science

University of the Punjab

From Model-Free to Model-Based RL

The previous chapters discussed model-free methods, and we saw their success
in video games and simulated robotics.
In model-free methods:

» the agent updates a policy directly from the feedback that the
environment provides,

> the environment performs the state transitions and calculates the reward.

A disadvantage of deep model-free methods:
» they can be slow to train,

» millions of environment samples are often needed for stable convergence
or low variance.

Basic Idea of Model-Based RL

In contrast, with model-based methods the agent first builds its own internal
transition model from the environment feedback.
Using this local transition model, the agent can:

» reason about the effect of actions on states and rewards,

» use a planning algorithm to play what-if games,

» generate policy updates without causing any state changes in the
environment.

Generating policy updates from the internal model is called:

planning or imagination.

Indirect Policy Learning

Model-based methods update the policy indirectly:
1. first learn a local transition model from the environment,

2. then use this learned model to update the policy.

Two consequences of indirect learning:

Positive side

As soon as the agent has its own transition model, it can:
> learn the best policy for free,
» avoid further acting in the environment,

> achieve much lower sample complexity.

The Downside: Model Error

The downside is that the learned transition model may be inaccurate.

If the agent learns the policy from a bad model:
> the resulting policy may be of low quality,
» the policy may fail in the real environment,

> even infinite planning samples cannot fix a biased model.
Thus:

model bias and uncertainty are central challenges in model-based RL.

Historical Context and Model Types

The idea of learning an internal transition function is very old.

Transition models have been implemented in many ways:
» Tabular models
» Deep neural network models
» hybrids and structured models

Modern deep RL often uses:
» convolutional or recurrent predictors,
> latent dynamics models,

» multi-step world models and learned simulators.

Direct and Indirect Reinforcement Learning'

Value/Policy
planning acting
direct RL
Model Environment

model learn/ng

!sutton2018introduction.

Tabular | ination

Tabular Imagination

v

Dyna: Classic approach? popularizing model-based RL.

v

Environment samples used to:
> train transition model,
» plan to improve policy,
» update policy directly.

v

Hence: hybrid of model-free + model-based learning.

» “Imagination™ agent looks ahead using its own dynamics model.

v

Imagined samples augment real samples at no cost.

Zsutton1990integrated.

Tabular | ination

Why Hybrid?

v

In strict model-based approach, policy is updated only from learned model.

v

In Dyna, real samples also update policy directly.

v

Hybrid = model-free updates + planning updates.

v

Imagination = planning inside the agent’s “mind".

v

Real + imagined samples used together.

Tabular | ination

Strict Learned Dynamics Model

repeat
Sample env E to get D = (s,a,r',s)
Learn model M = T,(s,s’), Ra(s, s’)
forn=1...Ndo
Update policy 7(s, a) using M
end for
until 7 converges

> planning

Tabular | inatiol

Hybrid Model-Based Imagination

Policy/Value

planning acting

[Dynamics Model Environment

learning

repeat
Sample env E to get D = (s,a,r',s)
Update policy 7(s, a) directly > learning

Learn model M = T,(s,s’), Ra(s,s’)
forn=1...Ndo
Update policy 7(s, a) using M > planning
end for
until 7 converges

Tabular | ination

How Imagination Uses Feedback

» Real samples:
» update policy,
» update dynamics model.
» Model:
> generates imagined transitions,
» provides extra policy updates.

» Greatly increases number of updates without extra environment cost.

Tabular | inatiol

Dyna-Q Algorithm

Initialize Q(s,a) — R randomly

Initialize M(s,a) — R x S randomly > Model
repeat
Select s € S randomly
a <« m(s) > m(s) can be e-greedy(s) based on Q
(s',r) < E(s,a) > Learn new state and reward from environment

Q(s,a) «+ Q(s,a) + a-[r+v -maxy Q(s,3") — Q(s, a)]
M(s,a) « (s, r)
forn=1...,Ndo

Select § and & randomly

(s',r) < M(3,3) > Plan imagined state and reward from model
Q(5,8) « Q(3,8) +a- [r+~-maxy Q(s',d) — Q(S,)]
end for

until @ converges

Tabular | ination

Remarks on Dyna-Q

» Uses Q-function as behavior policy (e-greedy).
» Each real sample:

» updates Q-values (model-free),
» updates model M.

v

Each planning step:
» samples M using random actions,
» updates Q-values.

v

N controls ratio: real vs. model updates.

v

Typical large-scale settings: 1 : 1000 (env:model).

Reversible Planning and Irreversible Learning

Reversible Planning vs. Irreversible Learning

Model-Free vs. Model-Based (High-Level)
» Model-free:

» Sample the environment directly
» Update policy 7(s, a) in one step
» No explicit transition model
» Model-based:
» Learn dynamics model {T,, R,} from samples
» Update policy indirectly using the learned model
» Planning replaces many real environment interactions

Key motivation: reduce environment samples while keeping/improving policy
quality.

Reversible Planning and Irreversible Learning

Model-Based vs. Model-Free

Model-Free Learning Model-Based Learning and Planning

learning

Policy/Value . Policy/Value .
planning acting
acting
learning

» Learn model {T,, R,}
» Plan with model to update
policy

Environment

» Update policy directly from
real experience

Reversible Planning and Irreversible Learning

Learning vs. Planning: Big Picture

Planning:

» Uses an internal transition model

v

Local state lives inside the agent

» Actions can be undone

v

Enables search, backtracking, tree expansion
» Synonyms: imagination, simulation
Learning:
» No internal transition model
» Must act in the real environment

» Actions are irreversible

v

No backtracking; only forward progression

» Synonyms: sampling, rollout

Reversible Planning and Irreversible Learning

Why Planning is Reversible

v

Planning uses the agent’s internal model

v

Local state is stored in memory

v

Agent can:
» Try an action
» Observe predicted next state
» Undo action and return to previous state
» Explore alternative branches

v

Enables tree search methods and “what-if” reasoning

Similar to dreaming: we can undo actions in imagination®.

v

3moerland2020framework.

Reversible Planning and Irreversible Learning

Why Learning is Irreversible

» Real actions applied to real environment

» Next state cannot be undone by the agent

» Environment transitions are one-way

» Learning must follow environment trajectory (a path)
» Policy learned by repeated real sampling

» No ability to backtrack or explore alternate realities

Reversible Planning and Irreversible Learning

Comparing Planning and Learning

Planning Learning
Transition model in: Agent Environment
Undo possible? Yes No
State: Reversible Irreversible

Dynamics:
Structure;

New state from:

Reward from:
Synonyms:

Backtracking
Tree

Agent model
Agent model

Imagination, simulation

Forward-only
Path

Env. samples
Env. samples

Sampling, rollout

Reversible Planning and Irreversible Learning

Similarity Between Planning and Learning

v

Both collect (s, a, r,s’) samples

v

Both update the policy 7 (s, a)
Difference is source of samples:

> Learning: real environment

» Planning: internal model
Model-based RL learns both:

» Policy 7(s, a)

» Dynamics {T,(s,s’), Ra(s,s")}

v

v

Learning the Model

Learning the Model

» In model-based RL, the transition model is learned from sampled
interactions.
» Planning quality depends critically on model accuracy.
> If the model is inaccurate:
» Planning does not improve the value or policy functions.
» Performance may become worse than model-free RL.
» When the learning/planning ratio is large (e.g., 1/1000), even small
model errors quickly degrade performance.
» Two major strategies to increase transition-model accuracy:

1. Uncertainty Modeling
2. Latent Models

Learning the Model

Uncertainty Modeling: Motivation

» Transition variance can be reduced with more samples, but this is
expensive.

» Goal: Explicitly estimate and propagate model uncertainty.
» Benefits:

» More reliable long-horizon predictions.
» Improved policy learning under model errors.

Learning the Model

Gaussian Processes for Dynamics

» A popular approach for small or low-dimensional problems.
» Gaussian Processes learn:
» A predictive function for the next state.
» A covariance matrix representing uncertainty.
» Advantages:
» Strong uncertainty estimates.
» Very sample-efficient.
» Limitations:
» Poor scalability to high-dimensional environments.
» Computationally expensive for large datasets.
» Example: PILCO (Probabilistic Inference for Learning Control).

Learning the Model

Example: PILCO

v

Uses Gaussian Processes to model probabilistic dynamics.

v

Learns policies by propagating uncertainty through predictions.

v

Demonstrated strong sample efficiency on:

» Cartpole
» Mountain Car

v

Limitation: Does not scale to high-dimensional inputs (e.g., raw pixels).

Learning the Model

Trajectory Distribution Approaches

v

Another method: sample trajectories optimized for cost.

v

These trajectories are then used to train a policy.

v

Uses locally linear models + stochastic trajectory optimization.
Example: Guided Policy Search (GPS)

GPS can efficiently train high-dimensional policies (hundreds—thousands
of parameters).

v

v

Learning the Model

Ensemble Methods

v

Ensembles combine multiple models to reduce variance.

v

Widely used in supervised ML (e.g., Random Forests).
In model-based RL:

» Each model provides a prediction.
» The ensemble variance serves as an uncertainty estimate.

v

v

Applications show strong performance on continuous-control tasks.

Learning the Model

PETS: Probabilistic Ensembles with Trajectory Sampling

v

Introduced by Chua et al. (2018).
Uses:

» An ensemble of probabilistic neural networks.
» Stochastic trajectory sampling.

v

v

Achieves excellent performance in:

» Half-Cheetah
» Reacher
» Other MulJoCo tasks

Improves sample efficiency vs. model-free baselines.

v

Learning the Model

ME-TRPO: Ensembles + TRPO

» Proposed by Kurutach et al. (2018).
» Method:

» Train an ensemble of neural network dynamics models.
» During planning, each imaginary transition is sampled from a random
ensemble member.
» Use TRPO to optimize policy.
» Reported strong sample efficiency on:
» Snake
» Swimmer
» Hopper
» Half-Cheetah

Learning the Model

Summary: Uncertainty Modeling

v

Explicitly captures model uncertainty.
Methods include:

» Gaussian Processes

» Trajectory-distribution methods (e.g., GPS)

» Ensembles (e.g., PETS, ME-TRPO)
Works well for:

> Low-dimensional problems (GP methods)
» Moderate-dimensional problems (ensembles)

v

v

v

Next: A complementary approach — Latent Models.

Learning the Model

Latent Models: Key Idea

» High-dimensional environments (e.g., images) contain many irrelevant
details.

» Latent models compress observations into a smaller representation.

» Planning and learning occur entirely in this low-dimensional latent space.
» Benefits:

» Reduced sample complexity.
» More robust prediction.
» Focus on task-relevant features only.

Learning the Model

Why Latent Models?

» Raw observations often contain:

» Background objects
» Unchanging elements
» Visual artifacts unrelated to reward

» Latent models:

» Learn compact abstract states.
» Remove irrelevant information.
» Enable long-horizon planning in latent space.

Learning the Model

Examples of Latent Model Approaches

» Many recent successes rely on latent-space planning:

World Models (Ha and Schmidhuber, 2018)

Dreamer / DreamerV2 / DreamerV3 (Hafner et al.)

Value Prediction Networks (VPN)

Mastering Atari with Discrete World Models (Hafner, 2020)
PlaNet (Hafner, 2019)

> All share the principle: Plan and learn in a reduced latent space.

v

vV vy VvYy

Learning the Model

Value Prediction Network (VPN)

» Proposed by Oh et al. (2017).
» Key idea: Predict values and rewards without predicting
observations.
» Uses four differentiable latent-space functions:
1. Encoding function £
2. Reward function f’eward
3. Value function f"al”e
4. Transition funct|on fg 2"

» Planning occurs on latent abstract states.

Learning the Model

VPN: Latent-Space Functions

v

Encoding:
fee;nc * Sactual — Slatent
Maps raw observations (e.g., images) to latent states.

Transition: Predicts next latent state given action.

v

Reward: Predicts expected reward in latent space.

v

Value: Predicts the expected future return from a latent state.

v

Learning the Model

VPN: Why It Works

» Latent states contain only task-relevant features.
» No need to model high-dimensional observations.
» Planning becomes:
> Faster
» Lower variance
» Less computationally expensive
» Enables multi-step lookahead and imagination-based planning.

Planning with the Model

From Learning Models to Using Models

» So far we focused on improving the accuracy of learned internal models.
> We now shift from model construction to model usage.
» We study two planning approaches designed to tolerate model
inaccuracies:
» Trajectory rollouts with limited horizon
» Model-predictive control (MPC)
» Goal: reduce the effect of model errors by limiting planning horizon and

continuously re-planning.

Planning with the Model

Trajectory Rollouts

> At each planning step, the learned transition model

T.(s) = ¢

predicts next states and rewards.
» Long rollouts accumulate large model errors.

» Therefore: avoid deep planning horizons.

Example: Gu et al. (2016)
> Use locally linear models.
» Rollout depth: 5-10 steps.
» Effective on MuJoCo tasks (Gripper, Reacher).

Planning with the Model

Model-Based Value Expansion (MVE)

» Feinberg et al. (2018): limit look-ahead to depth H, then combine:

» Near future: model-based predictions
» Far future: model-free value estimates

» Horizons tried: 1, 2, 10.
» Horizon 10 performs best on Swimmer, Walker, Half-Cheetah.

» Sample complexity improves over DDPG.

Other works:
» Janner et al. (2019), Kalweit & Boedecker (2017)

» All find that effective model horizons are much shorter than full task
horizons.

Planning with the Model

Model-Predictive Control (MPC)

v

Also known as decision-time planning.

v

Standard technique in process engineering.
Key idea:

v

» Optimize a model-based plan over a short horizon.
» Execute only the first action.
> Re-learn and re-plan at every time-step.

Why it works:

» Many real processes are locally linear over small ranges.
» Frequent re-planning prevents large error accumulation.

v

Planning with the Model

MPC in Real Systems

» Applied in automotive and aerospace domains:

» Terrain-following
» Obstacle avoidance
» Complex process control

» Works well with inaccurate models due to short horizon updates.

Deep RL examples:
» Finn et al. (2017) and Ebert et al. (2018):

» Visual foresight for robotic manipulation.
» Model predicts future frames.
» MPC selects lowest-cost action sequence.

» Capabilities:
» Multi-object manipulation
» Pushing, grasping, placing
» Cloth folding

Planning with the Model

MPC with Ensemble Models: PETS

» PETS (Chua et al. 2018):

» Uses probabilistic ensembles for dynamics learning.

» Uses CEM (Cross-Entropy Method) for planning.

» In MPC style: execute first action only; re-plan at every step.
» Common trend:

» Ensemble dynamics models + MPC = robust planning.

Planning with the Model

Planning by a Neural Network?

» Traditionally:

» Learn transition model with backprop.
» Use hand-crafted algorithm for planning (e.g., limited-horizon search).

» Trend in ML:

> Replace hand-coded algorithms with differentiable, learnable modules.
> Train them end-to-end.

» Question:

Can we make the planning stage differentiable and learnable?

Planning with the Model

Why Might Planning-by-Network Work?

» Neural networks typically do:
» Transformations
» Filtering
» Classification / selection
» Planning consists of:
> Action selection
» State unrolling
» RNNs and LSTMs do maintain state internally.

» Therefore: planning might be implementable using deep networks.

Planning with the Model

Value Iteration Networks (VIN)

» Tamar et al. (2016) introduced VIN:

» A differentiable neural network that performs value iteration.
» Designed for Grid world planning.
» CNN layers emulate dynamic programming steps.

» Core idea:

» Value iteration = repeated convolution + max-pooling.
» Each CNN channel corresponds to an action’s Q-value.
» Stacking K convolution layers ~ K value-iteration updates.

Planning with the Model

Value Iteration Computation in CNN Form

Value iteration update:

V(s) = maaxz Ta(s,8")(Ra(s,s") + v V(s))

v

Double loop over states and actions.

v

CNN implementation:

» Convolution implements local transition and reward propagation.
» Max-pooling implements action maximization.

v

The VIN module becomes a differentiable planner.

v

Training via backprop learns:

» Transition dynamics
» Embedded planning behavior

	Introduction

