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From Model-Free to Model-Based RL

The previous chapters discussed model-free methods, and we saw their success
in video games and simulated robotics.

In model-free methods:

I the agent updates a policy directly from the feedback that the
environment provides,

I the environment performs the state transitions and calculates the reward.

A disadvantage of deep model-free methods:

I they can be slow to train,

I millions of environment samples are often needed for stable convergence
or low variance.
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Basic Idea of Model-Based RL

In contrast, with model-based methods the agent �rst builds its own internal
transition model from the environment feedback.

Using this local transition model, the agent can:

I reason about the e�ect of actions on states and rewards,

I use a planning algorithm to play what-if games,

I generate policy updates without causing any state changes in the
environment.

Generating policy updates from the internal model is called:

planning or imagination.
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Indirect Policy Learning

Model-based methods update the policy indirectly:

1. �rst learn a local transition model from the environment,

2. then use this learned model to update the policy.

Two consequences of indirect learning:

Positive side

As soon as the agent has its own transition model, it can:

I learn the best policy for free,

I avoid further acting in the environment,

I achieve much lower sample complexity.
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The Downside: Model Error

The downside is that the learned transition model may be inaccurate.

If the agent learns the policy from a bad model:

I the resulting policy may be of low quality,

I the policy may fail in the real environment,

I even in�nite planning samples cannot �x a biased model.

Thus:

model bias and uncertainty are central challenges in model-based RL.
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Historical Context and Model Types

The idea of learning an internal transition function is very old.

Transition models have been implemented in many ways:

I Tabular models

I Deep neural network models

I hybrids and structured models

Modern deep RL often uses:

I convolutional or recurrent predictors,

I latent dynamics models,

I multi-step world models and learned simulators.
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Direct and Indirect Reinforcement Learning1

Value/Policy

EnvironmentModel

acting

model learning

planning

direct RL

1sutton2018introduction.
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Tabular Imagination

I Dyna: Classic approach2 popularizing model-based RL.

I Environment samples used to:
I train transition model,
I plan to improve policy,
I update policy directly.

I Hence: hybrid of model-free + model-based learning.

I �Imagination�: agent looks ahead using its own dynamics model.

I Imagined samples augment real samples at no cost.

2sutton1990integrated.
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Why Hybrid?

I In strict model-based approach, policy is updated only from learned model.

I In Dyna, real samples also update policy directly.

I Hybrid = model-free updates + planning updates.

I Imagination ⇒ planning inside the agent's �mind�.

I Real + imagined samples used together.
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Strict Learned Dynamics Model

repeat
Sample env E to get D = (s, a, r ′, s ′)
Learn model M = Ta(s, s

′),Ra(s, s
′)

for n = 1 . . .N do
Update policy π(s, a) using M . planning

end for
until π converges
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Hybrid Model-Based Imagination

EnvironmentDynamics Model

Policy/Value

learning

learning

actingplanning

repeat
Sample env E to get D = (s, a, r ′, s ′)
Update policy π(s, a) directly . learning
Learn model M = Ta(s, s

′),Ra(s, s
′)

for n = 1 . . .N do
Update policy π(s, a) using M . planning

end for
until π converges
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How Imagination Uses Feedback

I Real samples:
I update policy,
I update dynamics model.

I Model:
I generates imagined transitions,
I provides extra policy updates.

I Greatly increases number of updates without extra environment cost.
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Dyna-Q Algorithm

Initialize Q(s, a)→ R randomly
Initialize M(s, a)→ R× S randomly . Model
repeat

Select s ∈ S randomly
a← π(s) . π(s) can be ε-greedy(s) based on Q
(s ′, r)← E (s, a) . Learn new state and reward from environment
Q(s, a)← Q(s, a) + α · [r + γ ·maxa′ Q(s ′, a′)− Q(s, a)]
M(s, a)← (s ′, r)
for n = 1, . . . ,N do

Select ŝ and â randomly
(s ′, r)← M(ŝ, â) . Plan imagined state and reward from model
Q(ŝ, â)← Q(ŝ, â) + α · [r + γ ·maxa′ Q(s ′, a′)− Q(ŝ, â)]

end for
until Q converges
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Remarks on Dyna-Q

I Uses Q-function as behavior policy (ε-greedy).

I Each real sample:
I updates Q-values (model-free),
I updates model M.

I Each planning step:
I samples M using random actions,
I updates Q-values.

I N controls ratio: real vs. model updates.

I Typical large-scale settings: 1 : 1000 (env:model).
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Reversible Planning vs. Irreversible Learning

Model-Free vs. Model-Based (High-Level)

I Model-free:
I Sample the environment directly
I Update policy π(s, a) in one step
I No explicit transition model

I Model-based:
I Learn dynamics model {Ta,Ra} from samples
I Update policy indirectly using the learned model
I Planning replaces many real environment interactions

Key motivation: reduce environment samples while keeping/improving policy
quality.



Tabular Imagination Reversible Planning and Irreversible Learning Learning the Model Planning with the Model

Model-Based vs. Model-Free

Model-Free Learning

Environment

Policy/Value

learning acting

I Update policy directly from
real experience

Model-Based Learning and Planning

EnvironmentDynamics Model

Policy/Value

learning

actingplanning

I Learn model {Ta,Ra}
I Plan with model to update

policy
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Learning vs. Planning: Big Picture

Planning:

I Uses an internal transition model

I Local state lives inside the agent

I Actions can be undone

I Enables search, backtracking, tree expansion

I Synonyms: imagination, simulation

Learning:

I No internal transition model

I Must act in the real environment

I Actions are irreversible

I No backtracking; only forward progression

I Synonyms: sampling, rollout
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Why Planning is Reversible

I Planning uses the agent's internal model

I Local state is stored in memory

I Agent can:
I Try an action
I Observe predicted next state
I Undo action and return to previous state
I Explore alternative branches

I Enables tree search methods and �what-if� reasoning

I Similar to dreaming: we can undo actions in imagination3.

3moerland2020framework.



Tabular Imagination Reversible Planning and Irreversible Learning Learning the Model Planning with the Model

Why Learning is Irreversible

I Real actions applied to real environment

I Next state cannot be undone by the agent

I Environment transitions are one-way

I Learning must follow environment trajectory (a path)

I Policy learned by repeated real sampling

I No ability to backtrack or explore alternate realities
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Comparing Planning and Learning

Planning Learning

Transition model in: Agent Environment
Undo possible? Yes No
State: Reversible Irreversible
Dynamics: Backtracking Forward-only
Structure: Tree Path
New state from: Agent model Env. samples
Reward from: Agent model Env. samples
Synonyms: Imagination, simulation Sampling, rollout
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Similarity Between Planning and Learning

I Both collect (s, a, r , s ′) samples

I Both update the policy π(s, a)
I Di�erence is source of samples:

I Learning: real environment
I Planning: internal model

I Model-based RL learns both:
I Policy π(s, a)
I Dynamics {Ta(s, s

′),Ra(s, s
′)}
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Learning the Model

I In model-based RL, the transition model is learned from sampled
interactions.

I Planning quality depends critically on model accuracy.

I If the model is inaccurate:
I Planning does not improve the value or policy functions.
I Performance may become worse than model-free RL.

I When the learning/planning ratio is large (e.g., 1/1000), even small
model errors quickly degrade performance.

I Two major strategies to increase transition-model accuracy:

1. Uncertainty Modeling

2. Latent Models
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Uncertainty Modeling: Motivation

I Transition variance can be reduced with more samples, but this is
expensive.

I Goal: Explicitly estimate and propagate model uncertainty.

I Bene�ts:
I More reliable long-horizon predictions.
I Improved policy learning under model errors.
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Gaussian Processes for Dynamics

I A popular approach for small or low-dimensional problems.

I Gaussian Processes learn:
I A predictive function for the next state.
I A covariance matrix representing uncertainty.

I Advantages:
I Strong uncertainty estimates.
I Very sample-e�cient.

I Limitations:
I Poor scalability to high-dimensional environments.
I Computationally expensive for large datasets.

I Example: PILCO (Probabilistic Inference for Learning Control).
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Example: PILCO

I Uses Gaussian Processes to model probabilistic dynamics.

I Learns policies by propagating uncertainty through predictions.

I Demonstrated strong sample e�ciency on:
I Cartpole
I Mountain Car

I Limitation: Does not scale to high-dimensional inputs (e.g., raw pixels).
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Trajectory Distribution Approaches

I Another method: sample trajectories optimized for cost.

I These trajectories are then used to train a policy.

I Uses locally linear models + stochastic trajectory optimization.

I Example: Guided Policy Search (GPS)

I GPS can e�ciently train high-dimensional policies (hundreds�thousands
of parameters).
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Ensemble Methods

I Ensembles combine multiple models to reduce variance.

I Widely used in supervised ML (e.g., Random Forests).

I In model-based RL:
I Each model provides a prediction.
I The ensemble variance serves as an uncertainty estimate.

I Applications show strong performance on continuous-control tasks.
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PETS: Probabilistic Ensembles with Trajectory Sampling

I Introduced by Chua et al. (2018).

I Uses:
I An ensemble of probabilistic neural networks.
I Stochastic trajectory sampling.

I Achieves excellent performance in:
I Half-Cheetah
I Reacher
I Other MuJoCo tasks

I Improves sample e�ciency vs. model-free baselines.
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ME-TRPO: Ensembles + TRPO

I Proposed by Kurutach et al. (2018).

I Method:
I Train an ensemble of neural network dynamics models.
I During planning, each imaginary transition is sampled from a random

ensemble member.
I Use TRPO to optimize policy.

I Reported strong sample e�ciency on:
I Snake
I Swimmer
I Hopper
I Half-Cheetah
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Summary: Uncertainty Modeling

I Explicitly captures model uncertainty.

I Methods include:
I Gaussian Processes
I Trajectory-distribution methods (e.g., GPS)
I Ensembles (e.g., PETS, ME-TRPO)

I Works well for:
I Low-dimensional problems (GP methods)
I Moderate-dimensional problems (ensembles)

I Next: A complementary approach � Latent Models.
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Latent Models: Key Idea

I High-dimensional environments (e.g., images) contain many irrelevant
details.

I Latent models compress observations into a smaller representation.

I Planning and learning occur entirely in this low-dimensional latent space.

I Bene�ts:
I Reduced sample complexity.
I More robust prediction.
I Focus on task-relevant features only.



Tabular Imagination Reversible Planning and Irreversible Learning Learning the Model Planning with the Model

Why Latent Models?

I Raw observations often contain:
I Background objects
I Unchanging elements
I Visual artifacts unrelated to reward

I Latent models:
I Learn compact abstract states.
I Remove irrelevant information.
I Enable long-horizon planning in latent space.
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Examples of Latent Model Approaches

I Many recent successes rely on latent-space planning:
I World Models (Ha and Schmidhuber, 2018)
I Dreamer / DreamerV2 / DreamerV3 (Hafner et al.)
I Value Prediction Networks (VPN)
I Mastering Atari with Discrete World Models (Hafner, 2020)
I PlaNet (Hafner, 2019)

I All share the principle: Plan and learn in a reduced latent space.
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Value Prediction Network (VPN)

I Proposed by Oh et al. (2017).

I Key idea: Predict values and rewards without predicting
observations.

I Uses four di�erentiable latent-space functions:

1. Encoding function f encθe

2. Reward function f rewardθr

3. Value function f valueθv
4. Transition function f transθt

I Planning occurs on latent abstract states.
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VPN: Latent-Space Functions

I Encoding:
f encθe : sactual → slatent

Maps raw observations (e.g., images) to latent states.

I Transition: Predicts next latent state given action.

I Reward: Predicts expected reward in latent space.

I Value: Predicts the expected future return from a latent state.
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VPN: Why It Works

I Latent states contain only task-relevant features.

I No need to model high-dimensional observations.

I Planning becomes:
I Faster
I Lower variance
I Less computationally expensive

I Enables multi-step lookahead and imagination-based planning.
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From Learning Models to Using Models

I So far we focused on improving the accuracy of learned internal models.

I We now shift from model construction to model usage.

I We study two planning approaches designed to tolerate model
inaccuracies:

I Trajectory rollouts with limited horizon
I Model-predictive control (MPC)

I Goal: reduce the e�ect of model errors by limiting planning horizon and
continuously re-planning.
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Trajectory Rollouts

I At each planning step, the learned transition model

Ta(s)→ s ′

predicts next states and rewards.

I Long rollouts accumulate large model errors.

I Therefore: avoid deep planning horizons.

Example: Gu et al. (2016)

I Use locally linear models.

I Rollout depth: 5�10 steps.

I E�ective on MuJoCo tasks (Gripper, Reacher).
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Model-Based Value Expansion (MVE)

I Feinberg et al. (2018): limit look-ahead to depth H, then combine:
I Near future: model-based predictions
I Far future: model-free value estimates

I Horizons tried: 1, 2, 10.

I Horizon 10 performs best on Swimmer, Walker, Half-Cheetah.

I Sample complexity improves over DDPG.

Other works:

I Janner et al. (2019), Kalweit & Boedecker (2017)

I All �nd that e�ective model horizons are much shorter than full task
horizons.
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Model-Predictive Control (MPC)

I Also known as decision-time planning.

I Standard technique in process engineering.

I Key idea:
I Optimize a model-based plan over a short horizon.
I Execute only the �rst action.
I Re-learn and re-plan at every time-step.

I Why it works:
I Many real processes are locally linear over small ranges.
I Frequent re-planning prevents large error accumulation.
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MPC in Real Systems

I Applied in automotive and aerospace domains:
I Terrain-following
I Obstacle avoidance
I Complex process control

I Works well with inaccurate models due to short horizon updates.

Deep RL examples:

I Finn et al. (2017) and Ebert et al. (2018):
I Visual foresight for robotic manipulation.
I Model predicts future frames.
I MPC selects lowest-cost action sequence.

I Capabilities:
I Multi-object manipulation
I Pushing, grasping, placing
I Cloth folding
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MPC with Ensemble Models: PETS

I PETS (Chua et al. 2018):
I Uses probabilistic ensembles for dynamics learning.
I Uses CEM (Cross-Entropy Method) for planning.
I In MPC style: execute �rst action only; re-plan at every step.

I Common trend:
I Ensemble dynamics models + MPC = robust planning.
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Planning by a Neural Network?

I Traditionally:
I Learn transition model with backprop.
I Use hand-crafted algorithm for planning (e.g., limited-horizon search).

I Trend in ML:
I Replace hand-coded algorithms with di�erentiable, learnable modules.
I Train them end-to-end.

I Question:

Can we make the planning stage di�erentiable and learnable?
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Why Might Planning-by-Network Work?

I Neural networks typically do:
I Transformations
I Filtering
I Classi�cation / selection

I Planning consists of:
I Action selection
I State unrolling

I RNNs and LSTMs do maintain state internally.

I Therefore: planning might be implementable using deep networks.
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Value Iteration Networks (VIN)

I Tamar et al. (2016) introduced VIN:
I A di�erentiable neural network that performs value iteration.
I Designed for Grid world planning.
I CNN layers emulate dynamic programming steps.

I Core idea:
I Value iteration = repeated convolution + max-pooling.
I Each CNN channel corresponds to an action's Q-value.
I Stacking K convolution layers ≈ K value-iteration updates.
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Value Iteration Computation in CNN Form

Value iteration update:

V (s) = max
a

∑
s′

Ta(s, s
′)(Ra(s, s

′) + γV (s ′))

I Double loop over states and actions.

I CNN implementation:

I Convolution implements local transition and reward propagation.
I Max-pooling implements action maximization.

I The VIN module becomes a di�erentiable planner.

I Training via backprop learns:

I Transition dynamics
I Embedded planning behavior
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