
CS-566 Deep Reinforcement Learning

Markov Decision Process

Nazar Khan

Department of Computer Science

University of the Punjab



RL in Daily Life
Finding a Supermarket

I New city, no map, no phone.

I You explore randomly and �nd a supermarket.

I You note the route, and retrace your steps home.

I Next time:
I Exploit: follow the known route.
I Explore: try new routes, maybe shorter.



RL Concepts in the Supermarket Story

I Agent: you

I Environment: the city

I States: your location at each step

I Actions: move left, right, forward, back

I Trajectories: routes you tried

I Policy: rule for choosing next action

I Reward/Cost: distance or time taken

I Exploration vs. Exploitation: try new vs. repeat old routes

I Transition model: your notebook map



RL in Daily Life
Supermarket Shopping

I Agent: The shopper.

I Environment: Supermarket layout.

I State: Items already in cart, location in store.

I Actions: Move to aisle, pick/skip item.

I Reward: Healthy, a�ordable, and complete shopping basket.



Sequential Decision Problems

I RL is used to solve sequential decision problems.

I Agent must make a sequence of decisions to maximize overall reward.

I Each problem involves:
I Agent = solver
I Environment = world/problem

I Goal: Find the optimal policy (sequence of actions).



Example: Grid World

I Simple environment for RL
experiments.

I Start state → Goal state.

I Actions: Up, Down, Left, Right.

I Variations:
I Loss squares (negative reward).
I Wall squares (impenetrable).

I By exploring the grid, taking di�erent
actions, and recording the reward, the
agent can �nd a route.

I When it has a route, it can try to �nd
a shorter route to the goal.



From Grids to Mazes

I Grid worlds are simple.

I Mazes introduce walls and
complexity.

I Used for path-�nding in:
I Robotics trajectory planning
I AI path-�nding problems



Box-Pushing Puzzles: Sokoban

I Classic planning + learning
benchmark.

I Rules:
I Boxes can only be pushed, not

pulled.
I Wrong moves create dead-ends.

I Hardness:
I Small instances solvable exactly.
I Larger instances are

NP-hard/PSPACE-hard.



Agent and Environment

Agent

Environment

Action atState st+1 Reward rt+1

Agent and environment

I Agent: Learner/decision maker.

I Environment: Provides states, rewards, transitions.

I Agent interacts → learns optimal policy.



Tabular Value-Based RL

I Reinforcement learning �nds the best policy to operate in an environment

I Key idea: Agent interacts with an Environment

I Environment provides feedback for agent's actions

I Feedback can in the form of positive or negative reward.

I Goal: learn a policy that maximizes long-term reward



Agent and Environment

Agent

Environment

Action atState st+1 Reward rt+1

Agent�Environment Interaction

I Environment has a state st
I Agent chooses an action at
I Transition: st → st+1

I Reward rt+1 received
I Goal: �nd optimal policy function π?(s) : s → a that gives in each

state s the best action a to take in that state.



Learning the Policy

I By trying di�erent actions, agent accumulates rewards

I Learns which actions are best for each state

I Environment only provides a number (reward), not instructions

I Advantage: can generate as much experience as needed (no labeled
dataset!)

I Optimal policy is learned from repeated interaction with the environment



Markov Decision Processes (MDPs)

I Framework for dealing with sequential decision problems

I Next state st+1 depends only on:
I Current state st
I Current action at

I No dependence on history (Markov property)

I Enables reasoning about future using only present information



Formal De�nition of MDP

An MDP is a 5-tuple (S ,A,Ta,Ra, γ):

I S is the set of states (environment con�gurations)

I A is the set of actions available

I Ta(s, s
′) = Pr(st+1 = s ′|st = s, at = a) is the probability that action a in

state s at time t will transition to state s ′ at time t+ 1 in the environment

I Ra(s, s
′) is the reward for transition s → s ′ because of action a

I γ ∈ [0, 1] is a discount factor representing the distinction between
immediate and long-term reward



State S

I Basis of every MDP: the state st at time t

I State s uniquely represents the con�guration of the environment

I Examples:
I Supermarket: current street corner
I Chess: full board con�guration
I Robotics: joint angles and limb positions
I Atari: all screen pixels



Deterministic vs. Stochastic Environments

I Deterministic: each action leads to exactly one new state
I Gridworld, Sokoban, Chess

I Stochastic: the same action can lead to multiple possible outcomes
I Robot pours water: success or spillage
I Outcomes depend on unknown factors in environment



Action A

I In state s, the agent chooses an action a (based on policy π(a|s))
I Action irreversibly changes the environment

I Examples:
I Supermarket: walk East
I Sokoban: push a box

I Possible actions di�er by state (e.g., walls may block moves)



Discrete vs. Continuous Actions

I Discrete: �nite set of actions
I Board games, grid navigation

I Continuous: actions span a range of values
I Robot arm movements
I Bet sizes in games

I Two types of RL algorithms:
I Value-based algorithms work well for discrete action spaces
I Policy-based algorithms work well for both discrete an continuous action

spaces



Transition Function Ta

I Transition function Ta(s, s
′): de�nes how states change after action a

I Every environment has its own transition function Ta

I Two kinds of RL:
I Model-free: agent does not know Ta; learns by interaction
I Model-based: agent learns its own approximation of the environment's Ta



Graph View of the State Space

I Dynamics of an MDP are modelled by transition function Ta(·) and
reward function Ra(·)

I The imaginary space of all possible states is called the state space

I States and actions can be seen as nodes in a transition graph

s

π a

s ′
ta, ra

1-level transition graph for an MDP

I Edges represent transitions s → a→ s ′

I Reward ra is associated with each transition ta



Graph View of the State Space

I RL is also known as learning by trial end error.

I Trial: moving down the tree (selecting actions)

I Error: propagating rewards up the tree (learning)

s

π a

s ′
ta, ra



Transition Graph for Grid World

s

Current state s

↑

s ′New state s ′

↓

s ′

←

s ′

→

s ′

1-level transition graph for an MDP representing the Grid World



Transition Graph for Grid World

s

Current state s

↑

s ′

↑

s ′′

↓

s ′′

←

s ′′

→

s ′′

↓

s ′

↑

s ′′

↓

s ′′

←

s ′′

→

s ′′

←

s ′

↑

s ′′

↓

s ′′

←

s ′′

→

s ′′

→

s ′

↑

s ′′

↓

s ′′

←

s ′′

→

s ′′

2-level transition graph for an MDP representing the Grid World



Stochastic vs. Deterministic State Spaces

s

π a

s ′
ta, ra

s

π

a, s ′
ta, ra

s

π a

s ′
ta, ra

Deterministic Deterministic Stochastic



Reward Ra

I Reward is a measure of the quality of a state (good or bad outcome)

I Important: we care about sequences of rewards

I Return: total cumulative reward of a sequence

I Value function V π(s): expected cumulative reward from s under policy π



Discount Factor γ

I Balances present vs. future rewards

I γ < 1: future rewards are discounted for continuous, never-ending tasks

I γ = 1: no discounting for episodic tasks that end, e.g., chess

I Most RL tasks in this course: episodic, so γ = 1



Policy π

I Policy π: rule for choosing actions

I π(a|s): probability of taking action a in state s

I Example: tabular stochastic policy (probabilities for each action)

I Deterministic policy: π(s)→ a



Example: Stochastic vs Deterministic Policy

Deterministic Policy

s π(s)

1 down
2 right
3 up

π(s)→ a

Stochastic Policy (table)

s up down left right

1 0.2 0.8 0.0 0.0
2 0.0 0.0 0.0 1.0
3 0.7 0.0 0.3 0.0

π(a|s) = probability of action a in
state s


