

# CS-566 Deep Reinforcement Learning

## Markov Decision Process



**Nazar Khan**  
**Department of Computer Science**  
**University of the Punjab**

---

## RL in Daily Life

### *Finding a Supermarket*

- ▶ New city, no map, no phone.
- ▶ You explore randomly and find a supermarket.
- ▶ You note the route, and retrace your steps home.
- ▶ Next time:
  - ▶ **Exploit:** follow the known route.
  - ▶ **Explore:** try new routes, maybe shorter.

## RL Concepts in the Supermarket Story

---

- ▶ **Agent:** you
- ▶ **Environment:** the city
- ▶ **States:** your location at each step
- ▶ **Actions:** move left, right, forward, back
- ▶ **Trajectories:** routes you tried
- ▶ **Policy:** rule for choosing next action
- ▶ **Reward/Cost:** distance or time taken
- ▶ **Exploration vs. Exploitation:** try new vs. repeat old routes
- ▶ **Transition model:** your notebook map

---

## RL in Daily Life

### *Supermarket Shopping*

- ▶ **Agent:** The shopper.
- ▶ **Environment:** Supermarket layout.
- ▶ **State:** Items already in cart, location in store.
- ▶ **Actions:** Move to aisle, pick/skip item.
- ▶ **Reward:** Healthy, affordable, and complete shopping basket.

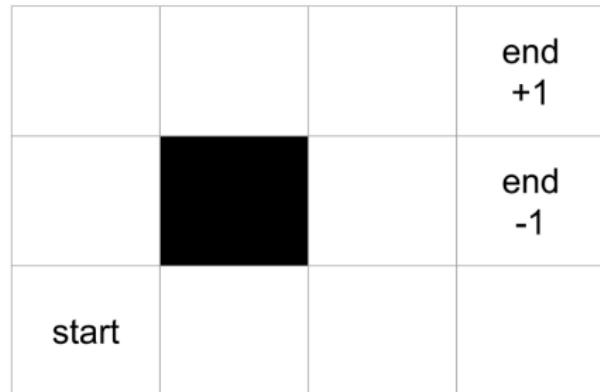
## Sequential Decision Problems

---

- ▶ RL is used to solve **sequential decision problems**.
- ▶ Agent must make a **sequence of decisions** to maximize overall reward.
- ▶ Each problem involves:
  - ▶ **Agent** = solver
  - ▶ **Environment** = world/problem
- ▶ Goal: Find the **optimal policy** (sequence of actions).

## Example: Grid World

- ▶ Simple environment for RL experiments.
- ▶ Start state → Goal state.
- ▶ Actions: **Up, Down, Left, Right.**
- ▶ Variations:
  - ▶ Loss squares (negative reward).
  - ▶ Wall squares (impenetrable).
- ▶ By exploring the grid, taking different actions, and recording the reward, the agent can find a route.
- ▶ When it has a route, it can try to find a shorter route to the goal.



## From Grids to Mazes

- ▶ Grid worlds are simple.
- ▶ Mazes introduce **walls and complexity**.
- ▶ Used for path-finding in:
  - ▶ Robotics trajectory planning
  - ▶ AI path-finding problems

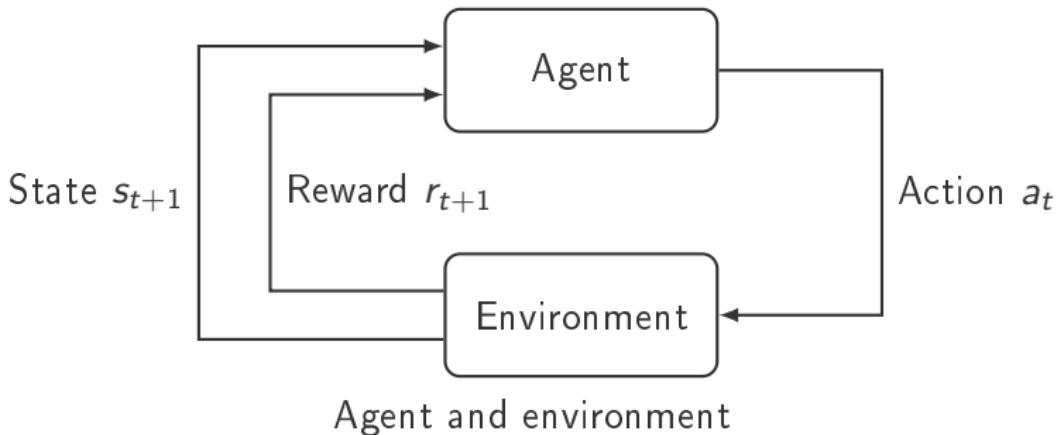


## Box-Pushing Puzzles: Sokoban

- ▶ Classic planning + learning benchmark.
- ▶ Rules:
  - ▶ Boxes can only be **pushed**, not pulled.
  - ▶ Wrong moves create dead-ends.
- ▶ Hardness:
  - ▶ Small instances solvable exactly.
  - ▶ Larger instances are NP-hard/PSPACE-hard.



## Agent and Environment



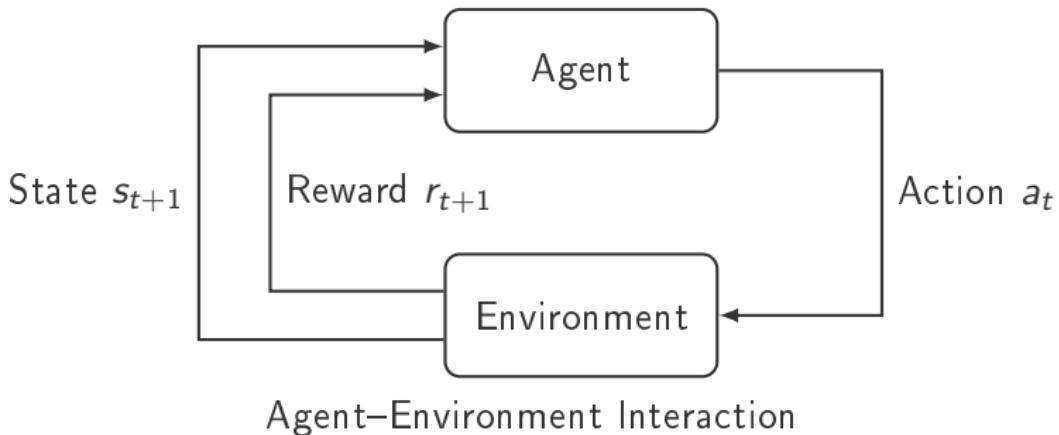
- ▶ **Agent:** Learner/decision maker.
- ▶ **Environment:** Provides states, rewards, transitions.
- ▶ Agent interacts → learns optimal policy.

## Tabular Value-Based RL

---

- ▶ Reinforcement learning finds the best **policy** to operate in an environment
- ▶ Key idea: **Agent** interacts with an **Environment**
- ▶ Environment provides feedback for agent's actions
- ▶ Feedback can in the form of positive or negative reward.
- ▶ Goal: learn a policy that maximizes long-term reward

## Agent and Environment



- ▶ Environment has a state  $s_t$
- ▶ Agent chooses an action  $a_t$
- ▶ Transition:  $s_t \rightarrow s_{t+1}$
- ▶ Reward  $r_{t+1}$  received
- ▶ Goal: find **optimal policy function**  $\pi^*(s) : s \rightarrow a$  that gives in each state  $s$  the best action  $a$  to take in that state.

## Learning the Policy

---

- ▶ By trying different actions, agent accumulates rewards
- ▶ Learns which actions are best for each state
- ▶ Environment only provides a number (reward), not instructions
- ▶ Advantage: can generate as much experience as needed (no labeled dataset!)
- ▶ Optimal policy is learned from repeated interaction with the environment

## Markov Decision Processes (MDPs)

- ▶ Framework for dealing with sequential decision problems
- ▶ Next state  $s_{t+1}$  depends only on:
  - ▶ Current state  $s_t$
  - ▶ Current action  $a_t$
- ▶ No dependence on history (*Markov property*)
- ▶ Enables reasoning about future using **only** present information

## Formal Definition of MDP

An MDP is a 5-tuple  $(S, A, T_a, R_a, \gamma)$ :

- ▶  $S$  is the set of states (environment configurations)
- ▶  $A$  is the set of actions available
- ▶  $T_a(s, s') = \Pr(s_{t+1} = s' | s_t = s, a_t = a)$  is the probability that action  $a$  in state  $s$  at time  $t$  will *transition* to state  $s'$  at time  $t + 1$  in the environment
- ▶  $R_a(s, s')$  is the reward for transition  $s \rightarrow s'$  because of action  $a$
- ▶  $\gamma \in [0, 1]$  is a *discount* factor representing the distinction between immediate and long-term reward

## State $S$

---

- ▶ Basis of every MDP: the **state**  $s_t$  at time  $t$
- ▶ State  $s$  uniquely represents the configuration of the environment
- ▶ Examples:
  - ▶ Supermarket: current street corner
  - ▶ Chess: full board configuration
  - ▶ Robotics: joint angles and limb positions
  - ▶ Atari: all screen pixels

## Deterministic vs. Stochastic Environments

---

- ▶ **Deterministic:** each action leads to exactly one new state
  - ▶ Gridworld, Sokoban, Chess
- ▶ **Stochastic:** the same action can lead to multiple possible outcomes
  - ▶ Robot pours water: success or spillage
  - ▶ Outcomes depend on unknown factors in environment

## Action A

- ▶ In state  $s$ , the agent chooses an action  $a$  (based on policy  $\pi(a|s)$ )
- ▶ Action irreversibly changes the environment
- ▶ Examples:
  - ▶ Supermarket: walk East
  - ▶ Sokoban: push a box
- ▶ Possible actions differ by state (e.g., walls may block moves)

## Discrete vs. Continuous Actions

---

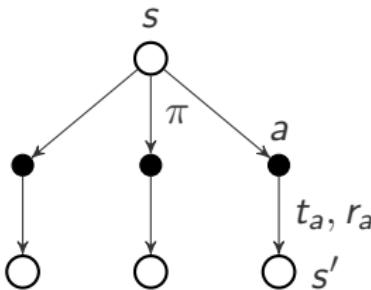
- ▶ **Discrete:** finite set of actions
  - ▶ Board games, grid navigation
- ▶ **Continuous:** actions span a range of values
  - ▶ Robot arm movements
  - ▶ Bet sizes in games
- ▶ Two types of RL algorithms:
  - ▶ *Value-based algorithms* work well for discrete action spaces
  - ▶ *Policy-based algorithms* work well for both discrete and continuous action spaces

## Transition Function $T_a$

- ▶ Transition function  $T_a(s, s')$ : defines how states change after action  $a$
- ▶ Every environment has its own transition function  $T_a$
- ▶ Two kinds of RL:
  - ▶ **Model-free**: agent does not know  $T_a$ ; learns by interaction
  - ▶ **Model-based**: agent learns its own approximation of the environment's  $T_a$

## Graph View of the State Space

- Dynamics of an MDP are modelled by transition function  $T_a(\cdot)$  and reward function  $R_a(\cdot)$
- The imaginary space of *all possible states* is called the *state space*
- States and actions can be seen as nodes in a *transition graph*

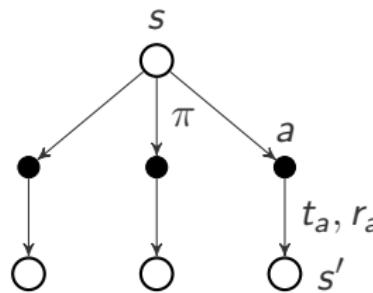


1-level transition graph for an MDP

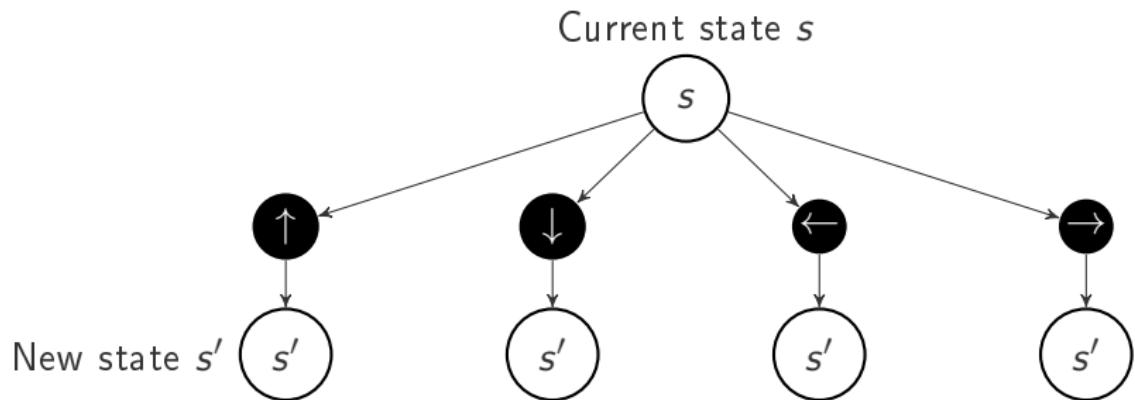
- Edges represent transitions  $s \rightarrow a \rightarrow s'$
- Reward  $r_a$  is associated with each transition  $t_a$

## Graph View of the State Space

- ▶ RL is also known as learning by *trial end error*.
- ▶ *Trial*: moving **down** the tree (selecting actions)
- ▶ *Error*: propagating rewards **up** the tree (learning)

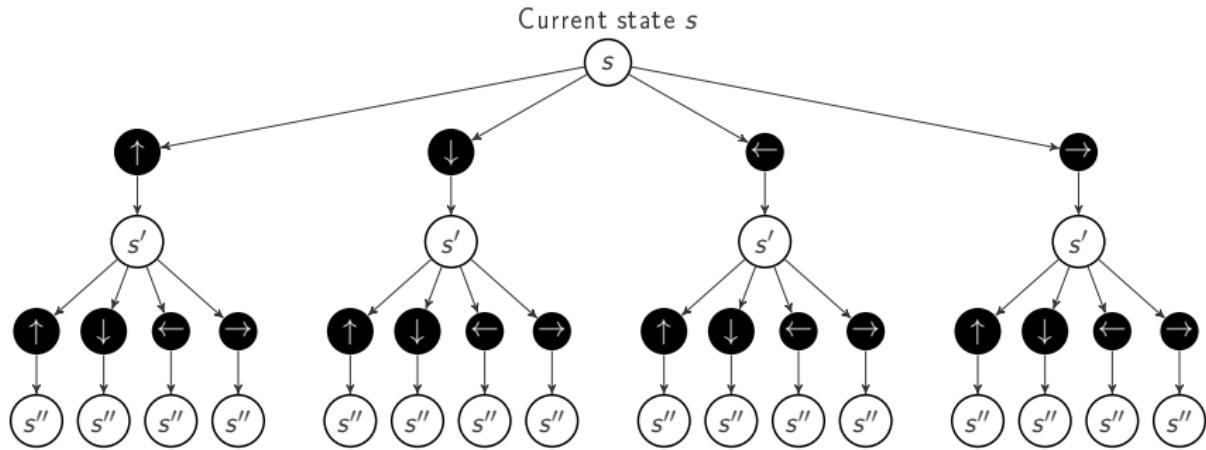


## Transition Graph for Grid World



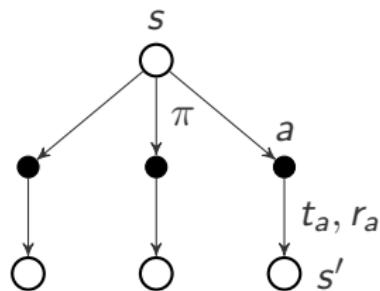
1-level transition graph for an MDP representing the Grid World

# Transition Graph for Grid World

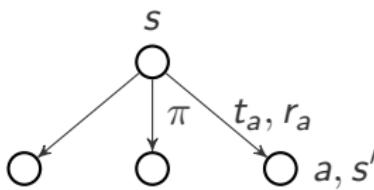


2-level transition graph for an MDP representing the Grid World

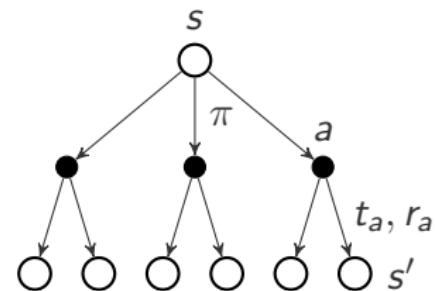
# Stochastic vs. Deterministic State Spaces



Deterministic



Deterministic



Stochastic

## Reward $R_a$

---

- ▶ Reward is a measure of the *quality* of a state (good or bad outcome)
- ▶ Important: we care about **sequences** of rewards
- ▶ *Return*: total cumulative reward of a sequence
- ▶ *Value function*  $V^\pi(s)$ : expected cumulative reward from  $s$  under policy  $\pi$

## Discount Factor $\gamma$

- ▶ Balances present vs. future rewards
- ▶  $\gamma < 1$ : future rewards are discounted for *continuous*, never-ending tasks
- ▶  $\gamma = 1$ : no discounting for *episodic* tasks that end, e.g., chess
- ▶ Most RL tasks in this course: episodic, so  $\gamma = 1$

## Policy $\pi$

- ▶ Policy  $\pi$ : rule for choosing actions
- ▶  $\pi(a|s)$ : probability of taking action  $a$  in state  $s$
- ▶ Example: tabular stochastic policy (probabilities for each action)
- ▶ Deterministic policy:  $\pi(s) \rightarrow a$

## Example: Stochastic vs Deterministic Policy

Deterministic Policy

| $s$ | $\pi(s)$ |
|-----|----------|
| 1   | down     |
| 2   | right    |
| 3   | up       |

$$\pi(s) \rightarrow a$$

Stochastic Policy (table)

| $s$ | up  | down | left | right |
|-----|-----|------|------|-------|
| 1   | 0.2 | 0.8  | 0.0  | 0.0   |
| 2   | 0.0 | 0.0  | 0.0  | 1.0   |
| 3   | 0.7 | 0.0  | 0.3  | 0.0   |

$\pi(a|s)$  = probability of action  $a$  in state  $s$