
CS-566 Deep Reinforcement Learning

MDP Objective Function

Nazar Khan
Department of Computer Science

University of the Punjab

What Does �Objective� Mean?

I In everyday language, objective refers to a
goal or target we want to achieve.

I In mathematics/optimization:
I The objective function is the quantity we

want to maximize or minimize.
I Example: In regression, objective is to

minimize mean squared error.
I In RL, objective is to maximize expected

cumulative reward.

I In this lecture: objective is �what the
agent is trying to optimize�.

x

O
b
je
ct
iv
e Maximum

MDP Objective

I Goal of Reinforcement Learning (RL): �nd the optimal policy function.

I Many algorithms exist under di�erent assumptions.

I Before de�ning the RL objective, we need to understand:
I Traces
I Return
I Value functions

Trace τ (Trajectory)

I As we start interacting with the MDP, at each timestep t:
I Observe state st
I Take an action at
I Observe next state st+1 ∼ Tat (st)
I Receive reward rt = Rat (st , st+1)

I Repeating this process leads to a sequence (trace/trajectory/episode).

τnt = {st , at , rt , st+1, . . . , at+n, rt+n, st+n+1}

Finite vs In�nite Trace

I n = length of the trace.

I Often assume n =∞, i.e., run until termination.

I In that case, write:
τt = τ∞t

I Traces are fundamental in RL:
I A single full rollout of decisions
I Also called trajectory, episode, or sequence

Trace Visualization

s

a

s

a

T T

Figure: Single Transition Step vs. Full 3-Step Trace/Episode/Trajectory

Example of a Trace

Example: A short trace with three actions:

τ20 = {s0 = 1, a0 = up, r0 = −1,
s1 = 2, a1 = up, r1 = −1,
s2 = 3, a2 = left, r2 = 20,

s3 = 5}

Trace τ : Step-by-Step Expansion

Recall: A trace (trajectory/episode) unfolds step by step:

I At each timestep t, observe st ,

I Take action at ,

I Observe reward rt and next state st+1.

Trace Example:

τ2
0
= {s0, a0, r0, s1, a1, r1, s2, a2, r2, s3}

s0

a0

r0

s1

a1

r1

s2

a2

r2

s3

Trace τ : Branching Expansion

Trace as a sequence:

τ0 = {s0, a0, r0, s1, a1, r1, s2, . . . }

But in practice:

I From each state st and action at ,

I The environment may branch into
di�erent st+1.

I So a trace is one path through this
tree.

s0

a0

r0

s1

a1

r1

s2

r ′
1

s ′
2

r ′
0

s ′
1

a1

r ′′
1

s ′′
2

r ′′′
1

s ′′′
2

Stochastic Spaces and Distribution over Traces

I Both the policy π and transitions T can be stochastic.

I So proceeding from the start start will not always produce the same trace.

I Instead, we get a distribution over traces:

p(τ0) = probability of complete trace from start state s0

I Probability of a trace = product of probabilities of its transitions:

p(τ0) = p0(s0) ·
∞∏
t=0

π(at |st) · Tat (st , st+1)

Distribution over Traces: Breaking Down the Equation

I The trace τ0 = {s0, a0, r0, s1, a1, r1, . . . } is one possible path.

I Its probability depends on:
I p0(s0) = probability of starting in state s0,
I π(at |st) = probability of choosing action at in state st ,
I Tat (st , st+1) = probability of transitioning to st+1 after action at .

I Multiply these step probabilities together for the full trace:

p(τ0) = p0(s0) π(a0|s0) Ta0(s0, s1) π(a1|s1) Ta1(s1, s2) · · ·

I Compact notation:

p(τ0) = p0(s0) ·
∞∏
t=0

π(at |st)Tat (st , st+1)

Distribution over Traces: Breaking Down the Equation

s0

a0

r0

s1

a1

r1

s2

r ′
1

s ′
2

r ′
0

s ′
1

a1

r ′′
1

s ′′
2

r ′′′
1

s ′′′
2

p0(s0)

π(a0|s0)

Ta0(s0, s1)

π(a1|s1)

Ta1(s1, s2)

A trace is just one path in the MDP tree, and its probability is the product of
the branching probabilities along that path.

Traces in RL

I Policy-based RL: depends heavily on full traces.

I Value-based RL: often uses single transition steps.

I ⇒ Both approaches build on the idea of traces.

Return R: What Are We Optimizing?

I Goal of sequential decision-making: Find the best policy.

I To evaluate a policy, we need a measure of long-term success.

I This measure is the return: the sum of rewards collected along a trace.

De�nition of Return R

I For a trace τt = (st , at , rt , st+1, at+1, rt+1, . . .)

I The return starting at time t is:

R(τt) = rt + γrt+1 + γ2rt+2 + · · ·

I Compact form:

R(τt) = rt +
∞∑
i=1

γ i rt+i

s0 s1 s2 s3 · · ·

r0 r1 r2 r3

γ0 = 1 γ1 γ2 γ3

Discount Factor γ

I γ ∈ [0, 1]: balances short-term vs. long-term rewards.

I Two extremes:
I γ = 0: Myopic agent (only immediate reward matters)
I γ = 1: Far-sighted agent (all rewards equally important)

I In in�nite-horizon tasks:
I γ = 1 can lead to unbounded returns.
I Typically use γ ≈ 0.99 to keep returns �nite.

Example: Computing Return

Example: Recall the sample trace.

I Assume γ = 0.9

I Rewards along trace: r0 = −1, r1 = −1, r2 = 20

I Return is:
R(τ20) = −1+ 0.9(−1) + 0.92(20)

= −1− 0.9+ 16.2 = 14.3

Intuition: Why Discounting?

I Ensures mathematical stability: in�nite sum remains bounded.

I Captures the idea of time preference:
I Immediate rewards are more certain/valuable.
I Future rewards are less predictable.

I γ lets us trade o�:
I Short-term exploitation
I Long-term exploration

From Traces to Expectations

I Return of a single trace is not enough.

I The environment can be stochastic ⇒ di�erent traces possible.

I The policy π can also be stochastic ⇒ actions may vary.

I Therefore: we care about the expected cumulative reward.

Expectation

I The expected value of a random variable X is the long-run average
outcome.

I De�nition:
E[X] =

∑
x

p(x) · x (discrete)

E[X] =

∫
x p(x) dx (continuous)

I Think of expectation as a weighted average, where outcomes are
weighted by their probability.

Expectation Example (Unfair Die)

I Suppose a die is biased:
X 1 2 3 4 5 6

p(X) 0.1 0.1 0.1 0.1 0.1 0.5

X · p(X) 0.1 0.2 0.3 0.4 0.5 3.0
I Expected value:

E[X] = 0.1(1+ 2+ 3+ 4+ 5) + 0.5 · 6 = 0.1 · 15+ 3 = 4.5

I Unlike the fair die (E[X] = 3.5), our unfair die's expectation is skewed
towards 6.

1

0.1

2

0.1

3

0.1

4

0.1

5

0.1

6

0.5

E[X] = 4.5

Expectation Example in RL

I In RL, rewards are random because:
I The policy π may be stochastic.
I The environment transitions T may be stochastic.

I Just like the number on the die, cumulative reward is a random variable.

I Therefore, the value function is an expectation over returns:

V π(s) = E
[
R(τ) | s0 = s, π

]
I Just like the unfair die rolls average to 4.5, the value function averages

over many possible traces.

State Value: De�nition

I The state value function V π(s):

V π(s) = Eτt∼p(τt)
[∞∑

i=0

γ i rt+i

∣∣∣ st = s
]

I Meaning:
I Start in state s.
I Follow policy π.
I Value = expected return.

V π(s) is the expected return when you start from state s and follow

policy π.

Example: Two Possible Traces

Imagine from state s under policy π:

I With probability 0.6 cumulative reward is 20

I With probability 0.4 cumulative reward is 10

Then:
V π(s) = 0.6 · 20+ 0.4 · 10 = 16

s Reward = 20

Reward = 10

0.6

0.4

State Value Function

I Every policy π de�nes a unique value function V π(s).

I Often we drop π and just write V (s).

I V (s) assigns a real number (expected return) to each state.

Example: Tabular state values (discrete state space)

State s V π(s)

1 2.0
2 4.0
3 1.0
etc. . . .

Terminal States

I By de�nition:
s = terminal ⇒ V (s) = 0

I Once the episode ends, no further rewards are possible.

From V (s) to Q(s, a)

I State value V π(s): expected return starting from state s and following π.

I But sometimes we want to know the value of a speci�c action.

I So we can de�ne the state-action value Qπ(s, a):

Qπ(s, a) = Eτt∼p(τt)
[∞∑

i=0

γ i · rt+i

∣∣∣ st = s, at = a
]

I Meaning: the expected return if we take action a in s, then follow π.

Formal De�nition

I Every policy π has exactly one associated Q-function.

I Domain and codomain:
Q : S × A→ R

I Each state-action pair (s, a) is mapped to the expected return.

I Terminal states: by convention

s = terminal ⇒ Q(s, a) := 0, ∀a

Intuition: Why Q(s, a)?

I V (s) tells us how good a state is, on average, under π.

I Q(s, a) tells us how good it is to take action a in state s.

I If we know Q, we can easily pick the best action:

π∗(s) = argmax
a

Q∗(s, a)

I This is why Q is central in reinforcement learning.

Example: Tabular Representation of Q(s, a)

For discrete S and A, Q can be stored in a table of size |S | × |A|.

a=up a=down a=left a=right

s=1 4.0 3.0 7.0 1.0
s=2 2.0 -4.0 0.3 1.0
s=3 3.5 0.8 3.6 6.2
etc.

Visual Intuition: Grid World

I In a grid world:
I Each state s = cell in the grid.
I Each action a = arrow direction.
I Q(s, a) = expected value of moving in that direction. 0.8 0.2

0.6

-0.3

Numerical Example: Computing Qπ(s, a)

Setup. From state s we evaluate action a1.

I Discount: γ = 0.9

I After taking a1 in s:

I With prob. 0.6: get r0 = 2, go to s1; under π, next step gives r1 = 5, then
terminal.

I With prob. 0.4: get r0 = −1, go to s ′
1
; under π, next step gives r1 = 10,

then terminal.

Branch returns (2-step horizon for clarity):

G1 = r0 + γr1 = 2+ 0.9× 5 = 6.5, G2 = r0 + γr1 = −1+ 0.9× 10 = 8.0

Expected return (de�nition of Qπ):

Qπ(s, a1) = 0.6× G1 + 0.4× G2 = 0.6× 6.5 + 0.4× 8 = 7.1

Visualization of the Example (Branches & Probabilities)

s

a1

r0 = 2

s1

r1 = 5

p =
0.6

r0 = −1

s ′
1

r1 = 10

p =
0.4

G1 = 2+ 0.9× 5 = 6.5 G2 = −1+ 0.9× 10 = 8.0

Qπ(s, a1) = 0.6× 6.5 + 0.4× 8 = 7.1

Compare Two Actions via Q: Choose argmaxa Q(s, a)

Action a1 (from previous slide): Qπ(s, a1) = 7.1.

Alternative action a2:

I With prob. 0.7: r0 = 3, next r1 = 2 (then terminal)

I With prob. 0.3: r0 = 3, next r1 = 0 (then terminal)

G
(a2)
1

= 3+ 0.9× 2 = 4.8, G
(a2)
2

= 3+ 0.9× 0 = 3.0

Qπ(s, a2) = 0.7× 4.8+ 0.3× 3.0 = 3.36+ 0.9 = 4.26

π∗(s) = arg max
a∈{a1,a2}

Qπ(s, a)

= a1 (since 7.1 > 4.26)

Trace View and Factorization of Probabilities

Each branch is a partial trace (here: 2 time steps after taking a in s).
For longer horizons,

Qπ(s, a) = E

[∞∑
i=0

γ i rt+i

∣∣∣∣∣ st = s, at = a

]

If transitions and policy are stochastic, each full trace probability factors as:

p(τt) = π(at |st) · Tat (st , st+1) · π(at+1|st+1) · Tat+1(st+1, st+2) · · ·

Then Qπ(s, a) is the expectation of discounted returns over all such traces
conditioned on (st = s, at = a).

Reinforcement Learning Objective

I We now have the ingredients to formally state the objective J(·) of
reinforcement learning.

I The objective: achieve the highest possible average return from the start
state.

J(π) = V π(s0) = Eτ0∼p(τ0|π)
[
R(τ0)

]
.

I V π(s0): value of the start state under policy π

I Expectation is taken over trajectories τ0 sampled from p(τ0|π)

Optimal Policy

I There exists one optimal value function, which achieves higher or equal
value than all others.

I The corresponding policy is called the optimal policy π?.

π?(a|s) = argmax
π

V π(s0)

I argmax selects the policy π that maximizes the expected return.

I Goal in RL: �nd π? for the start state s0.

State Values vs. State-Action Values

I Potential bene�t of using state-action values Q over state values V :
I Q directly tells what every action is worth.
I Useful for action selection in discrete action spaces.

a? = argmax
a∈A

Q?(s, a)

I The Q function identi�es the best action directly.

I Equivalently:

π?(s) = argmax
a∈A

Q?(s, a)

Visualizing V (s) vs. Q(s, a)

s

a1

a2

s ′

s ′′

Q(s, a1)

Q(s, a2)

V (s)

r , γV (s ′)

r , γV (s ′′)

I V (s): value of a state = expected return from that state.

I Q(s, a): value of taking action a in state s.

RL Objective

I Objective: maximize expected cumulative reward from the start state.

I Optimal policy π? achieves this maximum.

I Q-values make it easy to select optimal actions directly.

Agent

Environment

Action atState st+1 Reward rt+1

Agent interacting with environment to maximize objective J(π).

The Bellman Equation

I To compute the value function V (s):
I Imagine the state-space tree, expanded to cover all possible states.

s

π a

s ′

ta, ra

I The value of a parent node depends on:
I Immediate reward at that step.
I Discounted sum of its children's values.

I If you know all V (s ′), you can compute V (s).

I Recursive structure ⇒ dynamic programming.

Richard Bellman

I Richard Bellman formalized this recursive
approach in 1957.

I Introduced the term dynamic

programming.

I Showed that many discrete optimization
problems can be solved by backward

induction.
Richard Bellman (1920�1984)

Bellman Equation (Intuition)

I The value of a state s depends on:
I The policy π: how likely we are to take action a in s.
I The transition function T : probability of moving to s ′.
I The reward R: immediate gain for transition (s, a, s ′).
I The discount factor γ: importance of future rewards.

I Recursive de�nition:

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

Ta(s, s
′)
[
Ra(s, s

′) + γV π(s ′)
]

Bellman Equation as a Recursive Tree

s

R(s, a, s ′
1
)

s ′
1

+ γV (s ′
1
)

R(s, a, s ′
2
)

s ′
2

+ γV (s ′
2
)

Ta(s, s
′
1
) Ta(s, s

′
2
)

Each child contributes: Ta(s, s
′)
[
R(s, a, s ′) + γV (s ′)

]

Bellman Equation as Recursive Expansion

s

R(s, a, s ′
1
)

s ′
1

+ γV (s ′
1
)

R(s, a, s ′
2
)

s ′
2

+ γV (s ′
2
)

R(s, a, s ′
3
)

s ′
3

+ γV (s ′
3
)

Ta(s, s
′
1
)Ta(s, s

′
2
)Ta(s, s

′
3
)

General form: V π(s) =
∑

a π(a|s)
∑

s′ Ta(s, s
′)
[
Ra(s, s

′) + γV π(s ′)
]

Key Notes

I Recursion: The value of s depends on future values V π(s ′).

I Dynamics model: Requires knowledge of T (transitions) and R
(rewards).

I Often, these are unknown in practice ⇒ model-free RL.

I Bellman equation is the foundation of RL algorithms:
I Value iteration
I Policy iteration
I Q-learning

I We will study them in the next lecture.

