CS-566 Deep Reinforcement Learning

MDP Objective Function

Nazar Khan
Department of Computer Science

University of the Punjab

What Does “Objective” Mean?

» In everyday language, objective refers to a
goal or target we want to achieve.
» In mathematics/optimization:

» The objective function is the quantity we
want to maximize or minimize.

» Example: In regression, objective is to
minimize mean squared error.

> In RL, objective is to maximize expected
cumulative reward.

> In this lecture: objective is “what the
agent is trying to optimize”.

Objective

Maximum

MDP Objective

» Goal of Reinforcement Learning (RL): find the optimal policy function.
» Many algorithms exist under different assumptions.

» Before defining the RL objective, we need to understand:

» Traces
» Return
» Value functions

Trace 7 (Trajectory)

> As we start interacting with the MDP, at each timestep t:

Observe state s;

Take an action ay

Observe next state sy 1 ~ T,,(s¢)
Receive reward r; = R, (st, St41)

vV vy vy

» Repeating this process leads to a sequence (trace/trajectory/episode).

n
Ty = {sta Aty Ity St+15 -+ -5 dt4ns lt4n, 5t+n+1}

Finite vs Infinite Trace

» n = length of the trace.
» Often assume n = oo, i.e., run until termination.
> In that case, write:
Tt = Teo
» Traces are fundamental in RL:

» A single full rollout of decisions
» Also called trajectory, episode, or sequence

Trace Visualization

T

Figure: Single Transition Step vs. Full 3-Step Trace/Episode/Trajectory

Example of a Trace

Example: A short trace with three actions:

75 ={so=1,a =up,rp=—1,
s1=2,a; =up,n =-—1,
s» = 3, ap = left, n = 20,
S3 :5}

Trace 7: Step-by-Step Expansion

Recall: A trace (trajectory/episode) unfolds step by step:

» At each timestep t, observe s;,

—E—®

» Take action a;,

n

> Observe reward r; and next state s;;1.

=)

Trace Example:

=

2
To = {Soa307f0,51,31,f1,52732,f2,53}

Y
~

(8)—>s

Trace 7: Branching Expansion

Trace as a sequence:

To = {So, a0, 0,51,41, 1,52,

But in practice:

» From each state s; and action a,

» The environment may branch into

different s;.1.

> So a trace is one path through this

tree.

Stochastic Spaces and Distribution over Traces

v

Both the policy 7 and transitions T can be stochastic.

v

So proceeding from the start start will not always produce the same trace.

v

Instead, we get a distribution over traces:

p(70) = probability of complete trace from start state s

v

Probability of a trace = product of probabilities of its transitions:

o0

P(TO) = PO(SO) : H W(at|5t) : Tat(sta 5t+1)

t=0

Distribution over Traces: Breaking Down the Equation

» The trace 19 = {s, a0, r0, 1, a1, 11, ... } is one possible path.
> Its probability depends on:
> po(so) = probability of starting in state sp,
» 7(a¢|s;) = probability of choosing action a; in state s;,
> T,.(st,s:+1) = probability of transitioning to s;1 after action a;.

» Multiply these step probabilities together for the full trace:

P(0) = po(so) m(a0ls0) Tae(50,51) m(a1ls1) Tay(s1,%2) -+

» Compact notation:

o

P(TO) = PO(SO) : Hﬂ'(at\st) Tat(5t75t+1)
t=0

Distribution over Traces: Breaking Down the Equation

po(so) @

m(aols0)

Tao (50’ 5})/ \
o r

m(a1ls1)
Ta(s1,%2)
n r ry! r”

5 ® ®
A trace is just one path in the MDP tree, and its probability is the product of
the branching probabilities along that path.

Traces in RL

» Policy-based RL: depends heavily on full traces.
» Value-based RL: often uses single transition steps.

» = Both approaches build on the idea of traces.

Return R: What Are We Optimizing?

» Goal of sequential decision-making: Find the best policy.
» To evaluate a policy, we need a measure of long-term success.

» This measure is the return: the sum of rewards collected along a trace.

Definition of Return R

» For a trace 7r = (St, at, rt, St41, 3t41, Me4ly - -)

» The return starting at time ¢ is:

R(7e) = re +yres1 + VPrega + -
» Compact form:

o0
R(te) = re + Z’Y’ﬁ—H
i=1

rn r r3
1 1 | |
1 1 | |
N W
S0 s1 $ s3
_/ =/ N
A0 =1 ! ¥ o

Discount Factor ~

» ~ € [0,1]: balances short-term vs. long-term rewards.
> Two extremes:

» v =0: Myopic agent (only immediate reward matters)
» v = 1: Far-sighted agent (all rewards equally important)

» In infinite-horizon tasks:

» ~ =1 can lead to unbounded returns.
» Typically use v ~ 0.99 to keep returns finite.

Example: Computing Return

Example: Recall the sample trace.
> Assume v = 0.9
» Rewards along trace: o =—1, n =—1, n =20
> Return is:
R(73) = —1 4+ 0.9(—1) + 0.9%(20)

=-1-09+162=143

Intuition: Why Discounting?

» Ensures mathematical stability: infinite sum remains bounded.
» Captures the idea of time preference:

> Immediate rewards are more certain/valuable.
» Future rewards are less predictable.

> ~ lets us trade off:

» Short-term exploitation
» Long-term exploration

From Traces to Expectations

v

Return of a single trace is not enough.
The environment can be stochastic = different traces possible.

v

v

The policy 7 can also be stochastic =- actions may vary.

Therefore: we care about the expected cumulative reward.

v

Expectation

» The expected value of a random variable X is the long-run average
outcome.

» Definition:
E[X]=> p(x)-x (discrete)
E[X] :/xp(x) dx (continuous)

» Think of expectation as a weighted average, where outcomes are
weighted by their probability.

Expectation Example (Unfair Die)

» Suppose a die is biased:
X 1 2 3 4 5 6
p(X) [01/01[01|01][01]|05
X-p(X)|01]02]|03|04|05]3.0
> Expected value:

E[X]=01(14+2+3+4+5)+05-6=0.1-154+3=45

» Unlike the fair die (E[X] = 3.5), our unfair die's expectation is skewed
towards 6.

E[X] = 45

0.5

.
.
0.1 0.1 0.1 01 , 0.1
I BN B .
.
.

1 2 3 4 5 6

Expectation Example in RL

» In RL, rewards are random because:

» The policy m may be stochastic.
» The environment transitions T may be stochastic.

» Just like the number on the die, cumulative reward is a random variable.

» Therefore, the value function is an expectation over returns:
VT (s) = E[R(T) 5o = s,w]

» Just like the unfair die rolls average to 4.5, the value function averages
over many possible traces.

State Value: Definition

» The state value function V7™ (s):

o
V7(s) = Erip(r) [Z V' Fesi
i=0

StZS]

> Meaning:
» Start in state s.
» Follow policy .
» Value = expected return.

V7™ (s) is the expected return when you start from state s and follow
policy 7.

Example: Two Possible Traces

Imagine from state s under policy 7:
» With probability 0.6 cumulative reward is 20
» With probability 0.4 cumulative reward is 10

Then:
V™(s)=0.6-20+0.4-10=16

Reward = 20

Reward = 10

State Value Function

» Every policy 7 defines a unique value function V7 (s).

» Often we drop 7 and just write V/(s).
» V/(s) assigns a real number (expected return) to each state.

Example: Tabular state values (discrete state space)

State s | V7™(s)

1
2
3

etc.

2.0
4.0
1.0

Terminal States

» By definition:
s=terminal = V(s)=0

» Once the episode ends, no further rewards are possible.

From V(s) to Q(s, a)

v

State value V™ (s): expected return starting from state s and following .

» But sometimes we want to know the value of a specific action.

» So we can define the state-action value Q7 (s, a):
oo
QW(S7 a) = ETtNP(Tr)[ZIYI C e) St =S5,dr =4
i=0
» Meaning: the expected return if we take action a in s, then follow 7.

Formal Definition

v

Every policy 7 has exactly one associated Q-function.

Domain and codomain:

v

RQ:SxA-=-R

v

Each state-action pair (s, a) is mapped to the expected return.

v

Terminal states: by convention

s=terminal = Q(s,a):=0, Va

Intuition: Why Q(s, a)?

v

V/(s) tells us how good a state is, on average, under 7.

v

Q(s, a) tells us how good it is to take action a in state s.

v

If we know @, we can easily pick the best action:

7(s) = arg max Q*(s,a)

v

This is why @ is central in reinforcement learning.

Example: Tabular Representation of Q(s, a)

For discrete S and A, Q can be stored in a table of size |S| x |A|.

‘azup a=down a=left a=right

s=1| 4.0 3.0 7.0 1.0
s=2 | 20 -4.0 0.3 1.0
s=3 | 35 0.8 3.6 6.2

Visual Intuition: Grid World

> In a grid world:

>

>

>

Each state s = cell in the grid.
Each action a = arrow direction.
Q(s, a) = expected value of moving in that direction.

Numerical Example: Computing Q7 (s, a)

Setup. From state s we evaluate action aj.
» Discount: v =0.9
> After taking a; in s:

» With prob. 0.6: get ry = 2, go to s;; under 7, next step gives r, = 5, then
terminal.

» With prob. 0.4: get ry = —1, go to sj; under 7, next step gives r; = 10,
then terminal.

Branch returns (2-step horizon for clarity):
Gi=r+vn=24+09x5=6.5, Go=r+vyn=-1+09x10=238.0
Expected return (definition of Q™):

Q" (s,a1) =06 x G + 04x G = 06x65 + 04x8 =71

Visualization of the Example (Branches & Probabilities)

G =2+09%x5=65 n=>5 n =10 G =—-1+09x

(Q7(s,21) =06x65 + 04x8 = 7.1

Compare Two Actions via Q: Choose arg max, Q(s, a)

Action a; (from previous slide): Q7(s,a;) =7.1.
Alternative action a»:
> With prob. 0.7: rp = 3, next 1 = 2 (then terminal)
> With prob. 0.3: ry = 3, next 1 = 0 (then terminal)
G =3409x2=48 G =3+09x0=3.0
Q7(s,a2) =0.7x4.8+0.3x3.0=336+0.9=4.26

m*(s) = arg aer{r‘la)‘(a) Q7 (s, a)

= ay (since 7.1 > 4.26)

Trace View and Factorization of Probabilities

Each branch is a partial trace (here: 2 time steps after taking a in s).
For longer horizons,

S¢ = s, at—a]

Q™ (s, a) lZv ey

i=0

If transitions and policy are stochastic, each full trace probability factors as:

p(7e) = m(aelse) - Ta,(Sts Se1) - T(@es1|Se41) - Tapa (Ser1s Ses2) -+

Then Q7 (s, a) is the expectation of discounted returns over all such traces
conditioned on (s; = s, a; = a).

Reinforcement Learning Objective

» We now have the ingredients to formally state the objective J(-) of
reinforcement learning.

» The objective: achieve the highest possible average return from the start
state.

J(7) = V7(50) = Ergmp(rofr) | R(70)|.

» V7(sp): value of the start state under policy =

» Expectation is taken over trajectories 79 sampled from p(7g|m)

Optimal Policy

v

There exists one optimal value function, which achieves higher or equal
value than all others.

v

The corresponding policy is called the optimal policy 7*.

7*(als) = arg max V" (sp)

> arg max selects the policy 7 that maximizes the expected return.
Goal in RL: find 7* for the start state sg.

v

State Values vs. State-Action Values

» Potential benefit of using state-action values Q over state values V:

» @ directly tells what every action is worth.
» Useful for action selection in discrete action spaces.

* *
3" = argmax Q*(s,a)

» The Q function identifies the best action directly.
» Equivalently:

7 (s) = argmax Q*(s, a)
acA

Visualizing V/(s) vs. Q(s, a)

Qls a)

» V(s): value of a state = expected return from that state.

» Q(s,a): value of taking action a in state s.

RL Objective

» Objective: maximize expected cumulative reward from the start state.

» Optimal policy 7* achieves this maximum.

> Q-values make it easy to select optimal actions directly.

State s;11

Agent

Reward ri11

Environment

]

Action a;

Agent interacting with environment to maximize objective J(7).

The Bellman Equation

» To compute the value function V(s):

» Imagine the state-space tree, expanded to cover all possible states.
s

ta, Ia

» The value of a parent node depends on:

> Immediate reward at that step.
» Discounted sum of its children’s values.

» If you know all V/(s'), you can compute V/(s).

» Recursive structure = dynamic programming.

Richard Bellman

» Richard Bellman formalized this recursive
approach in 1957.

» Introduced the term dynamic
programming.

» Showed that many discrete optimization
problems can be solved by backward
induction.

Richard Bellman (1920-1984)

Bellman Equation (Intuition)

» The value of a state s depends on:

The policy 7: how likely we are to take action ain s.
The transition function T: probability of moving to s’.
The reward R: immediate gain for transition (s, a,s’).
The discount factor ~: importance of future rewards.

v

v vy

» Recursive definition:

Vi(s) =S w(als) 3 Tls.s) [Ra(s, s) + ’yV’r(s')}

acA s'eS

Bellman Equation as a Recursive Tree

Each child contributes: T.(s,s’)[R(s,a,s") +~yV(s')]

Bellman Equation as Recursive Expansion

s
Ta(s, 54 2
|R(s, a, s{)| |R(s, a, s§)|
V) v Vi)

® & O

General form: V™ (s) = 3>, n(als) X2, Ta(s, s') [Ra(s7 s) + 'yV”(s’)]

Key Notes

» Recursion: The value of s depends on future values V7 (s').

» Dynamics model: Requires knowledge of T (transitions) and R
(rewards).

v

Often, these are unknown in practice = model-free RL.

v

Bellman equation is the foundation of RL algorithms:
> Value iteration
» Policy iteration
> Q-learning

v

We will study them in the next lecture.

