

CS-566 Deep Reinforcement Learning

Policy-Based Learning

Nazar Khan
Department of Computer Science
University of the Punjab

Motivation: Continuous Action Spaces

- ▶ Deep RL has major successes in **continuous action spaces**:
 - ▶ Robotics (e.g., robot arms)
 - ▶ Self-driving cars
 - ▶ Real-time strategy games
- ▶ These environments require actions over **continuous ranges**, not discrete sets.

Examples of Continuous Action Spaces

- ▶ **Robotics control:**
Joint angles, torque, or velocity.
- ▶ **Self-driving cars:**
Steering, acceleration, braking.
- ▶ **Drone flight:**
Continuous pitch, roll, yaw, thrust.
- ▶ **Industrial control:**
Adjusting temperature or flow rate.
- ▶ **Finance:**
Portfolio weights as continuous allocations.
- ▶ **Healthcare:**
Continuous dosage control (e.g., insulin).
- ▶ **Gaming and simulation:**
Throttle, aim, camera rotation.
- ▶ **Locomotion:**
Walking, running, or balancing

Limitation of Value-Based Methods

- ▶ Value-based RL (e.g., Q-learning, DQN):
 1. Learns $Q(s, a)$ for all actions.
 2. Selects best action via $\arg \max_a Q(s, a)$.
- ▶ Works well for **discrete actions**.
- ▶ In continuous spaces:
 - ▶ $\arg \max$ is hard to compute.
 - ▶ Learning becomes unstable.
- ▶ Need a method that handles continuous actions directly.

Policy-Based Methods: The Direct Approach

- ▶ Skip value estimation – learn the **policy directly**.
- ▶ Policy-based methods represent:

$$\pi_{\theta}(a|s) = P(a|s; \theta)$$

- ▶ Model will directly output action probability.
- ▶ Improve parameters θ using **gradient ascent**.
- ▶ Learn by playing episodes and improving the policy each time.

Why Policy-Based Methods?

- ▶ **Advantages:**
 - ▶ Work naturally with **continuous actions**.
 - ▶ Produce **stochastic** policies (smooth exploration).
 - ▶ Applicable to more domains than value-based methods.
 - ▶ Integrate well with gradient-based deep learning.
- ▶ Some of the most popular deep RL methods are policy-based.
- ▶ Form the foundation for modern algorithms:
 - ▶ REINFORCE
 - ▶ Actor-Critic
 - ▶ PPO, A3C, DDPG

Jumping Robots

The Challenge of Locomotion

- ▶ One of the most intricate problems in robotics: **learning to walk, run, and jump.**
- ▶ Simulated robots have learned to jump over obstacle courses using deep reinforcement learning.
- ▶ Video example: https://www.youtube.com/watch?v=hx_bgoTF7bs¹.

Human Analogy

Learning to walk takes human infants months, even though the body is optimized for it. Locomotion combines *perception, balance, and continuous control*. Robots face a much harder version of this challenge.

¹[heess2017emergence](https://www.youtube.com/watch?v=hx_bgoTF7bs).

Jumping Robots

Why Locomotion Is Hard

- ▶ Locomotion is a **sequential decision problem**.
- ▶ Each leg has multiple **joints** that must:
 - ▶ Actuate in the right order.
 - ▶ Apply the right force and duration.
 - ▶ Rotate to the right angle.
- ▶ These control variables – **angles, forces, durations** – are all **continuous**.
- ▶ Algorithms must discover the **optimal continuous policy**.

Relevance

Policy-based deep reinforcement learning is widely used to train locomotion agents in simulation and real-world robotics.

Continuous Policies

From Discrete to Continuous Actions

- ▶ Earlier problems: small, **discrete** action spaces (e.g., Grid Worlds, Mazes, Atari: $\{N, E, S, W\}$ or joystick moves).
- ▶ Even complex games like Chess have discrete actions.
- ▶ In many real-world tasks, actions are instead **continuous**.

Shift in Focus

We now move from **large state spaces** to **continuous action spaces**.

Continuous Policies

Examples of Continuous Actions

- ▶ **Self-driving cars:** steering angle, duration, and angular velocity must vary smoothly.
- ▶ **Throttle control:** continuous adjustment of acceleration and braking.
- ▶ **Robotic joints:** can rotate by 1° , 2° , 90° , or any value in between.

Challenge

An action can take any value in a continuous range (e.g., $[0, 2\pi]$ or \mathbb{R}^+), making the space **infinitely large**.

Continuous Policies

Why Policy-Based Methods?

- ▶ Searching all combinations of continuous actions is infeasible.
- ▶ Discretization can approximate solutions but introduces **quantization errors**.
- ▶ In continuous domains, $\arg \max$ can no longer identify “the” best action.
- ▶ **Value-based methods** fail when actions are not discrete.

Solution

Policy-based methods learn continuous or stochastic policies *directly*, without needing a value function or $\arg \max$.

Stochastic Policies

Motivation

- ▶ Robots operate in **stochastic environments** – sensors and actuators introduce uncertainty.
- ▶ Example: a robot misjudges a door's distance or balance, leading to failure.
- ▶ Small noise in Q-values can cause **large policy shifts** in value-based methods.

- ▶ **Example:**

$$Q(s, a_1) = 1.00, \quad Q(s, a_2) = 0.99 \Rightarrow a_1$$

After small noise:

$$Q(s, a_1) = 0.99, \quad Q(s, a_2) = 1.00 \Rightarrow a_2$$

- ▶ Tiny Q perturbation \Rightarrow abrupt action change.
- ▶ Leads to unstable/oscillating policies.
- ▶ Worse in spaces with continuous or similarly beneficial actions.

▶ Convergence requires **slow learning rates** to smooth randomness.

Stochastic Policies

Advantages of Stochastic Policies

- ▶ Stochastic policies output a **distribution over actions** $\pi_\theta(a|s)$.
 - ▶ Instead of *choosing* a single best action, the agent *samples* actions according to $\pi_\theta(a|s)$.
- ▶ Naturally handle randomness in environment and action execution.
- ▶ Enable **built-in exploration** – no need for ϵ -greedy or softmax sampling.
 - ▶ Sampling *is* exploration.
- ▶ Improve stability and prevent drastic policy oscillations.

Stochastic Policies

Limitations and Extensions

- ▶ Purely episodic policy-based methods can have **high variance**.
 - ▶ Return G_t depends on **entire trajectory**

$$G_t = r_t + \gamma r_{t+1} + \dots$$

- ▶ Small randomness early in the episode \Rightarrow large change in final return
- ▶ Each episode produces a different $G_t \Rightarrow$ noisy gradient estimate
- ▶ May converge to **local optima** rather than global ones.
- ▶ Often **slower to converge** than value-based methods.

Solution: Actor–Critic Methods

Newer algorithms combine value and policy learning for stability:

- ▶ A3C (Asynchronous Advantage Actor–Critic)
- ▶ TRPO (Trust Region Policy Optimization)
- ▶ PPO (Proximal Policy Optimization)

Policy-Based RL Environments

Gym and MuJoCo

- ▶ Real-world robotics experiments are **expensive and slow**.
- ▶ Reinforcement learning often relies on **simulated physics environments**.
- ▶ Simulators approximate robot dynamics, forces, and interactions with the environment.
- ▶ Two popular simulators:
 - ▶ **MuJoCo** – Multi-Joint dynamics with Contact²
 - ▶ **PyBullet** – Open-source physics engine³
- ▶ Integrated with **OpenAI Gym** for standardized experimentation.

²todorov2012mujoco.

³coumans2019.

Robotics Environments

Complexity Beyond Classic RL Tasks

- ▶ Unlike Grid World, Mountain Car, or CartPole, robotic tasks have:
 - ▶ Multiple **joints and degrees of freedom**
 - ▶ **Continuous action spaces** (angles, forces, durations)
 - ▶ **Visuo-motor coordination** (e.g., grasping)
 - ▶ **Locomotion learning** (walking, running, jumping)
- ▶ Environments are partly unpredictable – agents must react to disturbances.

Physics Simulation Models

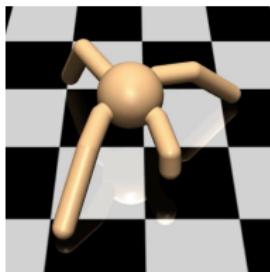
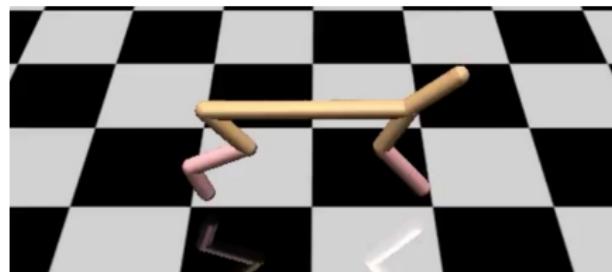
Why Simulate?

- ▶ Model-free RL requires **millions of samples**.
- ▶ This makes it infeasible on real robots.
- ▶ Physics engines simulate:
 - ▶ Forces, acceleration, velocity
 - ▶ Mass, elasticity, and friction
 - ▶ Grasping, locomotion, and gait
- ▶ Goals:
 - ▶ **Accuracy** – realistic physical dynamics
 - ▶ **Speed** – fast enough for RL training

MuJoCo Environments

Examples

- ▶ MuJoCo is deterministic but typically uses **randomized initial states**.
- ▶ Resulting environments are **non-deterministic overall**.
- ▶ Common benchmark tasks in Gym/MuJoCo:
 - ▶ **Ant** – 4-legged locomotion
 - ▶ **Half-Cheetah** – 2D running
 - ▶ **Humanoid** – full-body walking



Gym MuJoCo: Ant, Half-Cheetah, and Humanoid

Policy-Based Algorithm: REINFORCE

- ▶ Policy-based methods learn a parameterized policy π_θ that directly selects actions, without using a value function for action choice.
- ▶ Unlike value-based methods (which use $\arg \max$), these can naturally handle **continuous actions**.
- ▶ Policies are parameterized by θ (e.g., neural network weights) mapping states S to action probabilities A .

Intuitive Analogy: The Supermarket

The Supermarket Example

- ▶ **Value-based:** estimate how close each direction is to the supermarket (Q-values) and follow the shortest path.
- ▶ **Policy-based:** ask a local for a full set of directions (a trajectory) and try to improve it.

Policy Optimization Framework

- ▶ Basic framework of policy-based algorithms
 1. Initialize policy parameters θ .
 2. Sample a trajectory τ from π_θ .
 3. If τ yields high reward, adjust θ toward τ ; otherwise, away.
 4. Repeat until convergence.
- ▶ Recall that value function $V^\pi(s_0)$ is the expected cumulative return from initial state s_0 .
- ▶ Natural to use $V^\pi(s_0)$ as performance objective $J(\theta)$.
- ▶ **Goal:** maximize performance objective $J(\theta) = V^\pi(s_0)$.
- ▶ Use gradient ascent:

$$\theta_{t+1} = \theta_t + \alpha \nabla_\theta J(\theta)$$

Gradient Ascent Optimization (Algorithm Sketch)

Input: $J(\theta)$, learning rate α

Randomly initialize θ

repeat

 Sample trajectory τ

 Compute gradient $\nabla_{\theta} J(\theta)$

 Update: $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

until convergence

Neural Network Policy Representation

- ▶ $\pi_\theta(a|s)$: probability of taking action a in state s .
- ▶ Represented by a neural network with parameters θ :
 - ▶ Input: state s .
 - ▶ Output: action probabilities $\pi_\theta(a|s)$.
- ▶ Parameters θ define the mapping from states to actions.
- ▶ **Goal:** update θ so that π_θ becomes the optimal policy.
- ▶ **Intuition:** the better the action a , the more we should increase θ in that direction.

Ideal Update with Known Optimal Action

- ▶ Suppose we magically know the optimal action a^* for each state s .
- ▶ Then, we can update parameters toward the gradient of this optimal action:

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \pi_{\theta_t}(a^*|s)$$

- ▶ *Adjust θ so that probability of best action is maximized.*
- ▶ This pushes π_{θ} in the direction of the best possible action.
- ▶ However, in practice we do **not know** a^* .

Using Sample Trajectories Instead

- ▶ We can use sampled trajectories to estimate which actions are good.
- ▶ Replace the unknown a^* with a sampled action a and an estimated value:

$$\theta_{t+1} = \theta_t + \alpha \hat{Q}(s, a) \nabla_{\theta} \pi_{\theta_t}(a|s)$$

- ▶ Adjust θ so that probability of **sampled action** is maximized.
- ▶ But scale the adjustment by the **quality of that state-action pair**.
- ▶ $\hat{Q}(s, a)$ can come from:
 - ▶ Estimated Q-function,
 - ▶ Discounted return, or
 - ▶ Advantage function.

Problem: Instability from Double Updates

- ▶ The policy $\pi_\theta(a|s)$ is itself a probability.
- ▶ In the previous update, high-value actions:
 - ▶ are pushed harder (large $\hat{Q}(s, a)$), and
 - ▶ occur more often (large $\pi_\theta(a|s)$).
- ▶ These actions are **doubly reinforced**, which may cause instability.
- ▶ Fix: normalize the update by dividing by $\pi_\theta(a|s)$:

$$\theta_{t+1} = \theta_t + \alpha \frac{\hat{Q}(s, a)}{\pi_\theta(a|s)} \nabla_\theta \pi_{\theta_t}(a|s)$$

which can also be written as

$$\theta_{t+1} = \theta_t + \alpha \hat{Q}(s, a) \frac{\nabla_\theta \pi_{\theta_t}(a|s)}{\pi_\theta(a|s)}$$

From Gradients to Log-Gradients

- ▶ Use the calculus identity:

$$\nabla \log f(x) = \frac{\nabla f(x)}{f(x)}$$

- ▶ Substitute into the previous update:

$$\theta_{t+1} = \theta_t + \alpha \hat{Q}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)$$

- ▶ This is the **core REINFORCE update rule**⁴.
- ▶ REINFORCE updates similar to **logarithmic cross-entropy loss**.

⁴ williams1992simple.

Understanding the REINFORCE Update

- ▶ $\hat{Q}(s, a)$ acts as a weight – stronger reward \Rightarrow larger parameter push.
- ▶ $\nabla_{\theta} \log \pi_{\theta}(a|s)$ points in the direction that increases the log-probability of good actions.

The update

$$\Delta \theta = \alpha \hat{Q}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)$$

increases the probability of actions that yield higher returns.

REINFORCE Algorithm (Monte Carlo Policy Gradient)

Algorithm 1 REINFORCE

- 1: Initialize policy parameters θ
- 2: **for** each episode **do**
- 3: Generate trajectory $(s_0, a_0, r_0, \dots, s_T)$ using π_θ
- 4: **for** $t = T$ to 0 **do**
- 5: Compute return from step t onwards

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

- 6: Update policy parameters

$$\theta \leftarrow \theta + \alpha G_t \nabla_\theta \log \pi_\theta(a_t | s_t)$$

- 7: **end for**
- 8: **end for**

REINFORCE Summary

- ▶ Improves policy directly – no intermediate Q-function.
- ▶ Works for discrete, continuous, or stochastic actions.
- ▶ Known as **Monte Carlo Policy Gradient** since it uses sampled trajectories.
- ▶ $\pi_\theta(a|s)$ is a neural policy mapping states to action probabilities.
- ▶ The gradient ascent update adjusts θ to favor rewarding actions.
- ▶ Instability corrected by normalizing with $\pi_\theta(a|s)$.
- ▶ Using $\nabla \log \pi_\theta(a|s)$ yields the elegant and stable update rule

$$\theta_{t+1} = \theta_t + \alpha \hat{Q}(s, a) \nabla_\theta \log \pi_\theta(a|s)$$

Online vs Batch Updates

- ▶ Two main ways to update parameters in policy gradient methods:
 1. **Online**: update after each time step.
 2. **Batch**: update after completing the full trajectory.

Online Updates

- ▶ Parameters are updated **inside the innermost loop**.
- ▶ Each time step immediately affects the policy.
- ▶ Suitable for **parallel or streaming** environments.
- ▶ Ensures new information is used as soon as it becomes available.

Batch and Mini-Batch Updates

- ▶ **Batch:** accumulate all gradients over the trajectory, then update once.
- ▶ Reduces computational overhead of frequent updates.
- ▶ **Mini-batch:** compromise between online and batch.
- ▶ Balances:
 - ▶ Information efficiency (like online),
 - ▶ Computational efficiency (like batch).

Advantages of Policy-Based Methods

- ▶ **Deep learning compatibility:** Policy parameterization fits naturally with neural networks.
- ▶ **Stochastic policies:** Naturally discover stochastic behavior (no ϵ -greedy needed).
- ▶ **Exploration:** Built-in stochasticity promotes exploration.
- ▶ **Continuous actions:** Work well with large or continuous action spaces.
- ▶ **Smooth updates:** Small $\Delta\theta \Rightarrow$ small $\Delta\pi$, improving stability.

Disadvantages of REINFORCE (Episodic Monte Carlo)

- ▶ **Low bias, high variance:** Full random episodes produce unbiased but noisy estimates.
- ▶ **Low sample efficiency:** Many trajectories needed to estimate gradients.
- ▶ **Slow convergence:** Few updates per trajectory, learning is slower than value-based methods.
- ▶ **Local optima:** May converge to suboptimal policies.

Next Lecture

Improved policy-based methods.