
CS-566 Deep Reinforcement Learning

Stable Deep Value-Based Learning

Nazar Khan
Department of Computer Science

University of the Punjab

DQN DQN Code Extensions

Stable Deep Value-Based Learning
From Instability to Convergence

I Early concerns about convergence discouraged research in deep
reinforcement learning (DRL) for years.

I Researchers focused on Linear function approximators � more stable,

with convergence guarantees.

I Yet, work on convergent deep RL continued:
I Neural �tted Q-learning1

I Actor-critic variants2'3

I Early deep TD learning4'5

1Riedmiller, `Neural �tted Q iteration��rst experiences with a data e�cient neural
reinforcement learning method'.

2Bhatnagar et al., `Convergent temporal-di�erence learning with arbitrary smooth
function approximation'.

3Maei et al., `Toward o�-policy learning control with function approximation'.
4Sallans and Hinton, `Reinforcement learning with factored states and actions'.
5Heess, Silver, and Teh, `Actor-critic reinforcement learning with energy-based policies'.

DQN DQN Code Extensions

The Breakthrough: Deep Q-Networks (DQN)
Reviving Deep RL

I Mnih et al.6 showed that:
I Stable and convergent training is possible with deep networks.
I Even on complex domains (e.g., Atari 2600).

I Triggered renewed exploration into:
I Conditions enabling convergence
I Techniques to overcome the deadly triad:

1. Function approximation
2. Bootstrapping
3. O�-policy learning

I Led to stability-enhancing methods (e.g., replay bu�ers, target
networks).

6Volodymyr Mnih et al. `Human-level control through deep reinforcement learning'. In:
Nature 518.7540 (2015), pp. 529�533.

DQN DQN Code Extensions

Early Signs of Stable Learning
The Case of TD-Gammon

I In the late 1980s�1990s, Gerald Tesauro developed:
I Neurogammon: Supervised learning from expert Backgammon games7.
I TD-Gammon: Reinforcement learning from self-play using

temporal-di�erence updates8.

I Achieved stable learning with:
I A shallow network (1 hidden layer)
I Raw board input + heuristic features
I TD-style value updates (like Q-learning)

7Tesauro, `Neurogammon wins Computer Olympiad'.
8Tesauro, `Temporal di�erence learning and TD-Gammon'.

DQN DQN Code Extensions

Beyond Backgammon
Limits of Early Success

I Attempts to reproduce TD-Gammon's success:
I Checkers9

I Go10'11

I These e�orts largely failed to achieve stable learning.

I Hypothesis: Backgammon's randomness (dice rolls) may have:
I Improved exploration
I Smoothed the value landscape

I For years, it was believed that Backgammon was a special case.
9Kumar Chellapilla and David B Fogel. `Evolving neural networks to play checkers

without relying on expert knowledge'. In: IEEE Transactions on Neural Networks 10.6
(1999), pp. 1382�1391.

10Ilya Sutskever and Vinod Nair. `Mimicking Go experts with convolutional neural
networks'. In: International Conf. on Arti�cial Neural Networks. Springer. 2008,
pp. 101�110.

11Christopher Clark and Amos Storkey. `Teaching deep convolutional neural networks to
play Go. arXiv preprint'. In: arXiv preprint arXiv:1412.3409 1 (2014).

DQN DQN Code Extensions

Deep RL Matures
Towards Stable and Generalizable Learning

I Later work con�rmed that stability is achievable in deep RL:
I Atari: DQN and successors12

I Go: AlphaGo and AlphaZero13

I Continuous control: Deep actor-critic methods14

I Stable training and generalization are possible with:
I Target networks
I Experience replay
I Regularization and diversity methods

I Ongoing research aims to further understand and enhance:
I Convergence properties
I Diversity and representation learning

12Volodymyr Mnih et al. `Human-level control through deep reinforcement learning'. In:
Nature 518.7540 (2015), pp. 529�533.

13David Silver et al. `Mastering the game of Go without human knowledge'. In: Nature
550.7676 (2017), p. 354.

14Nicolas Heess, David Silver, and Yee Whye Teh. `Actor-critic reinforcement learning
with energy-based policies'. In: European Workshop on Reinforcement Learning. 2013,
pp. 45�58.

DQN DQN Code Extensions

Deep Q-Networks

I The DQN algorithm15 achieves stable and convergent training on
complex domains using

I experience replay, and
I infrequent weight updates.

Focus of DQN

The original focus of DQN is on two things.

1. breaking correlations between subsequent states, and

2. slowing down changes to parameters to improve stability.

15Volodymyr Mnih et al. `Human-level control through deep reinforcement learning'. In:
Nature 518.7540 (2015), pp. 529�533.

DQN DQN Code Extensions

Why are correlated states bad?

I Sequential agent-environment interactions create highly correlated
training samples

I The network might be trained on too many samples of a certain kind or in

a certain area.

I Other parts of the state space will remain under-explored.

We can reduce correlation � and the local minima they cause � by adding

a small amount of supervised learning.

DQN DQN Code Extensions

Experience Replay19

I To break correlations and to create a more diverse set of training

examples, DQN uses experience replay.
I Introduces a replay bu�er16 � a cache of previously explored states.
I Randomly samples training states from the replay bu�er.
I Biologically inspired17.
I Stores the last N examples in the replay memory, and samples
uniformly when performing updates.

I A typical18 number for N is 106.
16Long-Ji Lin. `Self-improving reactive agents based on reinforcement learning, planning

and teaching'. In: Machine Learning 8.3-4 (1992), pp. 293�321.
17James L McClelland, Bruce L McNaughton, and Randall C O'Reilly. `Why there are

complementary learning systems in the hippocampus and neocortex: insights from the
successes and failures of connectionist models of learning and memory.' In: Psychological
Review 102.3 (1995), p. 419.

18Shangtong Zhang and Richard S Sutton. `A deeper look at experience replay'. In:
arXiv preprint arXiv:1712.01275 (2017).

19Volodymyr Mnih et al. `Playing Atari with deep reinforcement learning'. In: arXiv
preprint arXiv:1312.5602 (2013).

DQN DQN Code Extensions

Experience Replay

I Training becomes more dynamic and diverse compared to learning from

the most recent state.

I Increases independence of subsequent training examples since next state

to be trained on is no longer a direct successor of the current state.

I More coverage since it spreads out the learning over more previously

seen states.

I Less correlation since it samples randomly from previous experiences.

Experience replay =⇒ o�-policy learning

Experience replay is a form of o�-policy learning, since the target parameters

are di�erent from those used to generate the sample.

DQN DQN Code Extensions

Infrequent Weight Updates20

I After every n updates, the network Qθ is cloned to obtain a target

network Qθ−, which is used for generating the targets for the
following n updates to Qθ.

I Weights θ− of the target network change n-times slower than weights θ of
the behavior policy.

Bene�t of stable targets

Stable Q-targets lead to

1. reduced divergence,

2. reduced oscillations, and

3. more stable parameters θ.

20Volodymyr Mnih et al. `Human-level control through deep reinforcement learning'. In:
Nature 518.7540 (2015), pp. 529�533.

DQN DQN Code Extensions

DQN Pseudocode

1 def dqn:

2 initialize replay_buffer empty

3 initialize Q network with random weights

4 initialize Qt target network with random weights

5 set s = s0

6 while not convergence:

7 # DQN in Atari uses preprocessing; not shown

8 epsilon -greedy select action a in argmax(Q(s,a)) #

action selection depends on Q (moving target)

9 sx ,reward = execute action in environment

10 append (s,a,r,sx) to buffer

11 sample minibatch from buffer # break temporal

correlation

12 take target batch R (when terminal) or Qt

13 do gradient descent step on Q # loss function uses

target Qt network

DQN DQN Code Extensions

Stable Baselines

I The environment is only half of the RL experiment.

I We also need an agent algorithm to learn the policy.

I OpenAI provided implementations of many RL algorithms, called

Baselines21.

I Stable Baselines22 contains improved implementations of OpenAI's

algorithms with more documentation23 and other features.

I Almost all algorithms in this course can be found in Stable Baselines.

pip install stable-baselines

21https://github.com/openai/baselines
22https://github.com/hill-a/stable-baselines
23https://stable-baselines.readthedocs.io/en/master/

https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://stable-baselines.readthedocs.io/en/master/

DQN DQN Code Extensions

The Breakout Game

DQN DQN Code Extensions

Learning Breakout using a DQN Agent using Stable Baselines

1 from stable_baselines.common.atari_wrappers import make_atari

2 from stable_baselines.deepq.policies import MlpPolicy ,

CnnPolicy

3 from stable_baselines import DQN

4
5 env = make_atari('BreakoutNoFrameskip -v4')

6
7 model = DQN(CnnPolicy , env , verbose =1)

8 model.learn(total_timesteps =25000)

9
10 obs = env.reset()

11 while True:

12 action , _states = model.predict(obs)

13 obs , rewards , dones , info = env.step(action)

14 env.render ()

DQN DQN Code Extensions

DQN Extensions

I DQN results spawned many re�nements.

I Some in setting targets.

I Some in selecting training samples.

I Some in network architecture.

I Some in handling stochasticity.

DQN DQN Code Extensions

Double Deep Q-Learning (DDQN)

I Deep Q-Learning may overestimate action values due to the max

operation.

I DQN target is computed as

yDQN = rt+1 + γmax
a

Q(st+1, a; θ−)

I We can rewrite it as

yDQN = rt+1 + γQ(st+1, argmax
a

Q(st+1, a; θ−); θ−)

I Same set of weights θ− is used twice for action selection and evaluation.

DQN DQN Code Extensions

Double Deep Q-Learning (DDQN)

I Double Deep Q-Learning24

I uses the Q-Network θ to choose the action, but
I uses the separate target Q-Network θ− to evaluate the action.

I Double DQN target is computed as

yDDQN = rt+1 + γQ(st+1, argmax
a

Q(st+1, a; θ); θ−)

I Reduces overestimation caused by the max operator.
I Action that maximizes Q(st+1, a; θ) might not maximize Q(st+1, a; θ−).

On 49 Atari games, DDQN achieved

I about twice the average score of DQN with the same

hyperparameters, and

I four times the average DQN score with tuned hyperparameters.

24Hado Van Hasselt, Arthur Guez, and David Silver. `Deep Reinforcement Learning with
Double Q-Learning'. In: AAAI. vol. 2. Phoenix, AZ. 2016, p. 5.

DQN DQN Code Extensions

Prioritized Experience Replay (PEX)

I Instead of sampling uniformly from the replay bu�er, use prioritized25

sampling.

I Probability of picking i-th sample from the bu�er is

pi =
|ei |a∑|B|
j=1 |ej |a

where ei is the TD-error for experience i and |B| is the size of the replay
bu�er.

I Sample with higher TD-error will have higher probability of being replayed.

I Parameter a controls the amount of prioritization (a = 0 =⇒ uniform

sampling).

25Tom Schaul et al. `Prioritized experience replay'. In: International Conference on

Learning Representations. 2016.

DQN DQN Code Extensions

Dueling Double Deep Q-Learning26 (DDDQN)

I Instead of directly estimating Q(s, a), network outputs 2 things:

1. State Value: V (s) � how good it is to be in state s.
2. Advantage: A(s, a) � how much better action a is compared to others in

state s.

26Ziyu Wang et al. `Dueling network architectures for deep reinforcement learning'. In:
International Conference on Machine Learning. 2016, pp. 1995�2003.

DQN DQN Code Extensions

Dueling Double Deep Q-Learning (DDDQN)

I The Q-value is then combined as

Q(s, a; θ, α, β) = V (s; θ, β) +
(
A(s, a; θ, α)− 1

|A|
∑
a′

A(s, a′; θ, α)
)

where θ denotes parameters of the shared backbone, α denotes parameters

of the advantage stream, and β denotes parameters of the value stream.

Intuition

Faster learning of V (s) when actions don't matter.

The two streams duel to produce the �nal Q-values.

DQN DQN Code Extensions

Dueling Double Deep Q-Learning (DDDQN)

I Combines tricks from DQN and DDQN.

I Experience replay and target networks from standard DQN.

I Double DQN target and update rule to reduce overestimation.

I Training target:

yDDDQN = yDDQN

and the network estimates Q(s, a) via V (s) and A(s, a).

I More stable, faster, and robust learning.

DQN DQN Code Extensions

Distributional Deep Q-Learning
Motivation

I Standard DQN estimates expected return:

Q(s, a) = E[Gt | st = s, at = a]

I This collapses uncertainty by ignoring the variability of outcomes.

Example

I Two actions might have the same expected reward

Q(s, ai) = Q(s, aj) = 5.

I But one is always 5, while the other alternates between 0 and 10.

I DQN treats both actions as identical, which can limit performance.

Key Idea

Model the entire distribution of returns, not just its mean.

DQN DQN Code Extensions

Distributional Reinforcement Learning
Core Idea

I Predict distribution Z (s, a) over returns27.

Q(s, a) = E[Z (s, a)]

I Each action's value is a random variable.

I The Bellman operator now acts on distributions:

T Z (s, a) = R(s, a) + γZ (s ′, a′)

I a′ = argmaxa′ E[Z (s ′, a′)]

27Marc G Bellemare, Will Dabney, and Rémi Munos. `A distributional perspective on
reinforcement learning'. In: International Conference on Machine Learning. 2017,
pp. 449�458.

DQN DQN Code Extensions

C51 Algorithm Overview
Bellemare et al. (2017)

1. Discretize return space:

zi = vmin + i
vmax − vmin

50
, i = 0, . . . , 50

2. Network output: 51 categorical probabilities (pi = p(zi))

p(s, a) = [p0, p1, . . . , p50]

3. Bellman target:
TZ (s, a) = r + γZ (s ′, a∗)

4. Projection: project target distribution back to �xed supports.

5. Loss: minimize KL-divergence

L = DKL

(
p(·|s, a) ‖ ΠTZ (·|s, a)

)

DQN DQN Code Extensions

C51: Intuition and Summary

I Learns a histogram of possible future returns.

I Captures uncertainty and risk.

I Each Q-value is computed as

Q(s, a) =
∑
i

zipi (s, a)

I Provides richer learning signals ⇒ faster convergence.

Bene�ts

I Models uncertainty and multi-modal outcomes

I Stabilizes training

DQN DQN Code Extensions

Summary Table
DQN vs. Distributional DQN

Aspect DQN Distributional DQN (C51)

Output type Scalar Q(s, a) Probability distribution pi (s, a)
Target Expected return Distribution of returns
Learning signal Mean-squared TD error KL divergence between distributions
Stability Moderate Higher (richer gradients)
Captures risk? No Yes

DQN DQN Code Extensions

Noisy DQN

I Another distributional method is noisy DQN28.

I Noisy DQN makes network layers stochastic by adding noise to the

weights.

I Noise is controlled by learnable parameters.

I Noise induces randomness in the agent's policy, which increases

exploration.

28Meire Fortunato et al. `Noisy networks for exploration'. In: International Conference on

Learning Representations. 2018.

DQN DQN Code Extensions

Summary

I Deep Q-Learning su�ers from instability and divergence due to the

moving-targets problem.

I Correlated states introduce further ine�ciency.

I The DQN paper used
I frozen target networks to reduce the moving-targets issue, and
I replay bu�ers to break temporal correlations.

I Spawned numerous extensions to achieve greater stability, speed, and
robustness.

I Double DQN to reduce overestimation from max operator.
I PEX to learn more from samples with high TD error.
I Dueling Double DQN for faster learning of V (s) when actions don't matter.
I Distributional DQN for exploiting uncertainty of returns.

	DQN
	DQN Code
	Extensions

