CS-566 Deep Reinforcement Learning

Stable Deep Value-Based Learning

Nazar Khan
Department of Computer Science

University of the Punjab

Stable Deep Value-Based Learning

From Instability to Convergence

» Early concerns about convergence discouraged research in deep
reinforcement learning (DRL) for years.

» Researchers focused on Linear function approximators — more stable,
with convergence guarantees.
» Yet, work on convergent deep RL continued:

> Neural fitted Q-learning!
» Actor-critic variants?'3
» Early deep TD learning*'®

'Riedmiller, ‘Neural fitted Q iteration—first experiences with a data efficient neural
reinforcement learning method’.

?Bhatnagar et al., ‘Convergent temporal-difference learning with arbitrary smooth
function approximation’.

3Maei et al., ‘Toward off-policy learning control with function approximation’.

“Sallans and Hinton, ‘Reinforcement learning with factored states and actions’.

®Heess, Silver, and Teh, ‘Actor-critic reinforcement learning with energy-based policies'.

The Breakthrough: Deep Q-Networks (DQN)
Reviving Deep RL

» Mnih et al.® showed that:
» Stable and convergent training is possible with deep networks.
» Even on complex domains (e.g., Atari 2600).

> Triggered renewed exploration into:

» Conditions enabling convergence
» Techniques to overcome the deadly triad:

1. Function approximation
2. Bootstrapping
3. Off-policy learning
» Led to stability-enhancing methods (e.g., replay buffers, target
networks).

8Volodymyr Mnih et al. ‘Human-level control through deep reinforcement learning'.
Nature

Early Signs of Stable Learning
The Case of TD-Gammon

> In the late 1980s-1990s, Gerald Tesauro developed:

» Neurogammon: Supervised learning from expert Backgammon games’.
» TD-Gammon: Reinforcement learning from self-play using
temporal-difference updates®.
> Achieved stable learning with:
> A shallow network (1 hidden layer)
» Raw board input + heuristic features
» TD-style value updates (like Q-learning)

white pieces move

black pieces
move clockwise

"Tesauro, ‘Neurogammon wins Computer Olympiad’.
8Tesauro, ‘Temporal difference learning and TD-Gammon'.

Beyond Backgammon
Limits of Early Success

> Attempts to reproduce TD-Gammon's success:
» Checkers®

» Gololl
» These efforts largely failed to achieve stable learning.

» Hypothesis: Backgammon’s randomness (dice rolls) may have:
» Improved exploration
» Smoothed the value landscape

» For years, it was believed that Backgammon was a special case.

®Kumar Chellapilla and David B Fogel. ‘Evolving neural networks to play checkers
without relying on expert knowledge'. In: |EEE Transactions on Neural Networks 10.6
(1999), pp. 1382-1391.

01lya Sutskever and Vinod Nair. ‘Mimicking Go experts with convolutional neural
networks'. In: International Conf. on Artificial Neural Networks. Springer. 2008,
pp. 101-110.

Y Christopher Clark and Amos Storkey. ‘Teaching deep convolutional neural networks to
play Go. arXiv preprint’. |n: arXiv preprint arXiv:1412.3409 1 (2014).

Deep RL Matures

Towards Stable and Generalizable Learning

» Later work confirmed that stability is achievable in deep RL:
» Atari: DQN and successors!?
» Go: AlphaGo and AlphaZero®?
» Continuous control: Deep actor-critic methods#
» Stable training and generalization are possible with:
» Target networks
» Experience replay
» Regularization and diversity methods
» Ongoing research aims to further understand and enhance:
» Convergence properties
» Diversity and representation learning
2\/olodymyr Mnih et al. ‘Human-level control through deep reinforcement learning’.
Nature .
3David Silver et al. ‘Mastering the game of Go without human knowledge'. Nature

YNicolas Heess, David Silver, and Yee Whye Teh. ‘Actor-critic reinforcement learning
with energy-based policies’. European Workshop on Reinforcement Learning

DQN

Deep Q-Networks

» The DQN algorithm!® achieves stable and convergent training on
complex domains using

» experience replay, and
» infrequent weight updates.

Focus of DQN
The original focus of DQN is on two things.
1. breaking correlations between subsequent states, and

2. slowing down changes to parameters to improve stability.

15\Volodymyr Mnih et al. ‘Human-level control through deep reinforcement learning’.
Nature

DQN

Why are correlated states bad?

» Sequential agent-environment interactions create highly correlated
training samples

» The network might be trained on too many samples of a certain kind or in
a certain area.

» Other parts of the state space will remain under-explored.

We can reduce correlation — and the local minima they cause — by adding
a small amount of supervised learning.

DQN

Experience Replay'®

» To break correlations and to create a more diverse set of training
examples, DQN uses experience replay.

Introduces a replay buffer'® — a cache of previously explored states.
Randomly samples training states from the replay buffer.

Biologically inspired®”.

Stores the last N examples in the replay memory, and samples
uniformly when performing updates.

» A typical'® number for N is 10°.

8| ong-Ji Lin. ‘Self-improving reactive agents based on reinforcement learning, planning
and teaching’. Machine Learning

7 James L McClelland, Bruce L McNaughton, and Randall C O Reilly. ‘Why there are
complementary learning systems in the hippocampus and neocortex: insights from the
successes and failures of connectionist models of learning and memory.’ Psychological
Review

8Shangtong Zhang and Rlchard S Sutton. ‘A deeper look at experience replay’.
arXiv preprint arXiv:1712.01275

9Volodymyr Mnih et al. ‘Playing Atari with deep reinforcement learning’. arXiv
preprint arXiv:1312.5602

vV vYyye.y

DQN

Experience Replay

» Training becomes more dynamic and diverse compared to learning from
the most recent state.

» Increases independence of subsequent training examples since next state
to be trained on is no longer a direct successor of the current state.

» More coverage since it spreads out the learning over more previously
seen states.

» Less correlation since it samples randomly from previous experiences.

Experience replay — off-policy learning

Experience replay is a form of off-policy learning, since the target parameters
are different from those used to generate the sample.

DQN

Infrequent Weight Updates?®

» After every n updates, the network @ is cloned to obtain a target
network Q,-, which is used for generating the targets for the
following n updates to Q.

» Weights 0~ of the target network change n-times slower than weights 6 of
the behavior policy.

Benefit of stable targets
Stable Q-targets lead to

1. reduced divergence,

2. reduced oscillations, and

3. more stable parameters 6.

20\/olodymyr Mnih et al. ‘Human-level control through deep reinforcement learning’.
Nature

DQN Code

DQN Pseudocode

def

initialize replay_buffer empty

initialize Q mnetwork with random weights
initialize (Qt target network with random weights
set s = s0

while not convergence:

DQN in Atari uses preprocessing; not shouwn

epsilon-greedy select action a in argmax(Q(s,a)) #
action selection depends on § (moving target)

sx,reward = execute action in environment

append (s,a,r,sx) to buffer

sample minibatch from buffer # break temporal
correlation

take target batch R (when terminal) or Qt

do gradient descent step on Q # loss function uses
target {(t network

DQN Code

Stable Baselines

» The environment is only half of the RL experiment.
> We also need an agent algorithm to learn the policy.

» OpenAl provided implementations of many RL algorithms, called

Baselines?!.

» Stable Baselines?? contains improved implementations of OpenAl’s

algorithms with more documentation®® and other features.

» Almost all algorithms in this course can be found in Stable Baselines.

pip install stable-baselines

2https://github. com/openai/baselines
2https://github.com/hill-a/stable-baselines
Bhttps://stable-baselines.readthedocs.io/en/master/

https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://stable-baselines.readthedocs.io/en/master/

DQN Code

The Breakout Game

DQN Code

Learning Breakout using a DQN Agent using Stable Baselines

from stable_baselines.common.atari_wrappers import make_atari

from stable_baselines.deepq.policies import MlpPolicy,
CnnPolicy

from stable_baselines import DQN

env = make_atari (’BreakoutNoFrameskip-v4’)

model = DQN(CnnPolicy, env, verbose=1)
model.learn(total_timesteps=25000)

obs = env.reset ()
while True:
action, _states = model.predict (obs)
obs, rewards, domnes, info = env.step(action)

env.render ()

Extensions

DQN Extensions

v

DQN results spawned many refinements.

» Some in setting targets.

v

Some in selecting training samples.

» Some in network architecture.

v

Some in handling stochasticity.

Extensions

Double Deep Q-Learning (DDQN)

» Deep Q-Learning may overestimate action values due to the max
operation.

» DQN target is computed as

YW =1+ max Q(st41,a,07)
» \We can rewrite it as
DQN _ =Y. p—
y o U = rep1 + YQ(sey1, argmax Q(Ser1,a;07);07)
a

» Same set of weights 6~ is used twice for action selection and evaluation.

Extensions

Double Deep Q-Learning (DDQN)

» Double Deep Q-Learning?*
» uses the Q-Network 6 to choose the action, but
> uses the separate target Q-Network 6~ to evaluate the action.

» Double DQN target is computed as

yPPMN = riy +9Q(se11, arg max Q(se41, 3 6):67)
a

» Reduces overestimation caused by the max operator.
» Action that maximizes Q(s¢+1, a;#) might not maximize Q(s;y1,a;67).

On 49 Atari games, DDQN achieved

» about twice the average score of DQN with the same
hyperparameters, and

» four times the average DQN score with tuned hyperparameters.

2Hado Van Hasselt, Arthur Guez, and David Silver. ‘Deep Reinforcement Learning with
Double Q-Learning'. AAAI

Extensions

Prioritized Experience Replay (PEX)

» Instead of sampling uniformly from the replay buffer, use prioritized?®
sampling.

» Probability of picking i-th sample from the buffer is

where ¢; is the TD-error for experience i and |B] is the size of the replay
buffer.

» Sample with higher TD-error will have higher probability of being replayed.

» Parameter a controls the amount of prioritization (a =0 = uniform
sampling).

25Tom Schaul et al. ‘Prioritized experience replay’. International Conference on
Learning Representations.

Extensions

Dueling Double Deep Q-Learning?® (DDDQN)

» Instead of directly estimating Q(s, a), network outputs 2 things:
1. State Value: V/(s) — how good it is to be in state s.
2. Advantage: A(s,a) — how much better action a is compared to others in
state s.

267iyu Wang et al. ‘Dueling network architectures for deep reinforcement learning’. In:
International Conference on Machine Learning. 2016, pp. 1995-2003.

Extensions

Dueling Double Deep Q-Learning (DDDQN)

where 0 denotes parameters of the shared backbone, o denotes parameters
of the advantage stream, and /3 denotes parameters of the value stream.

Intuition

Faster learning of V/(s) when actions don't matter.
The two streams duel to produce the final Q-values.

Extensions

Dueling Double Deep Q-Learning (DDDQN)

» Combines tricks from DQN and DDQN.
» Experience replay and target networks from standard DQN.
» Double DQN target and update rule to reduce overestimation.

> Training target:

DDDQN _ . DDQN

y y

and the network estimates Q(s, a) via V/(s) and A(s, a).

» More stable, faster, and robust learning.

Extensions

Distributional Deep Q-Learning
Motivation

» Standard DQN estimates expected return:
Q(s,a) =E[G; | st = s,ar = a]

» This collapses uncertainty by ignoring the variability of outcomes.

Example

» Two actions might have the same expected reward
Q(s,ai) = Q(s, aj) =5.

» But one is always 5, while the other alternates between 0 and 10.

» DQN treats both actions as identical, which can limit performance.

Key Idea

Model the entire distribution of returns, not just its mean.

Extensions

Distributional Reinforcement Learning
Core Idea

» Predict distribution Z(s,a) over returns®’.

Q(s,a) = E[Z(s, a)]

» Each action’s value is a random variable.

» The Bellman operator now acts on distributions:
TZ(s,a) = R(s,a) +vZ(s',)

» 3’ = argmaxy E[Z(s, d)]

*"Marc G Bellemare, Will Dabney, and Rémi Munos. ‘A distributional perspective on
reinforcement learning’. International Conference on Machine Learning

Extensions

C51 Algorithm Overview
Bellemare et al. (2017)

1. Discretize return space:

.Vmax — Vmin .
Zi = Vpin+iI——, i=0,...,50

50
2. Network output: 51 categorical probabilities (p; = p(z;))
p(s,a) = [po. p1, - - -, pso]

3. Bellman target:
TZ(s,a) =r+~Z(s', a%)

4. Projection: project target distribution back to fixed supports.
5. Loss: minimize KL-divergence

L= Dyr(p(-]s,a) | NTZ(:|s,a))

Extensions

C51: Intuition and Summary

v

Learns a histogram of possible future returns.

v

Captures uncertainty and risk.

v

Each Q-value is computed as

Q(s,a) = Z zipi(s, a)

v

Provides richer learning signals = faster convergence.

Benefits

» Models uncertainty and multi-modal outcomes

» Stabilizes training

Summary Table
DQN vs. Distributional DQN

Extensions

Aspect

DQN

Distributional DQN (C51)

Output type
Target
Learning signal
Stability
Captures risk?

Scalar Q(s, a)
Expected return
Mean-squared TD error
Moderate

No

Probability distribution p;(s, a)
Distribution of returns

KL divergence between distributions
Higher (richer gradients)

Yes

Extensions

Noisy DQN

v

Another distributional method is noisy DQN?8.

Noisy DQN makes network layers stochastic by adding noise to the
weights.

v

v

Noise is controlled by learnable parameters.

» Noise induces randomness in the agent’s policy, which increases
exploration.
28 Meire Fortunato et al. ‘Noisy networks for exploration’. International Conference on

Learning Representations.

Extensions

Summary

» Deep Q-Learning suffers from instability and divergence due to the
moving-targets problem.

» Correlated states introduce further inefficiency.
» The DQN paper used

» frozen target networks to reduce the moving-targets issue, and
» replay buffers to break temporal correlations.

» Spawned numerous extensions to achieve greater stability, speed, and
robustness.

Double DQN to reduce overestimation from max operator.

PEX to learn more from samples with high TD error.

Dueling Double DQN for faster learning of V/(s) when actions don't matter.

Distributional DQN for exploiting uncertainty of returns.

v

vV vy

	DQN
	DQN Code
	Extensions

