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Information Theory

Information theory studies:

I how much information is present in distributions;

I how to compare di�erent probability distributions.

We begin with the notion of information of an event.
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Information of an Event

The information I of observing event x from distribution p(X ):

I (x) = − log p(x).

Intuition:

I High probability ⇒ low information gain

I Low probability ⇒ high information gain

Extreme cases:

I p(x) = 0 : I (x) = − log 0 =∞
I p(x) = 1 : I (x) = − log 1 = 0
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Information and Uncertainty

Information can be interpreted as the reduction of uncertainty after observing
x .

Figure: Entropy of a binary variable as a function of p(x=1).
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Entropy

Entropy H[p] of a discrete distribution p(X ):

H[p] = EX∼p[I (X )]

= EX∼p[− log p(X )]

= −
∑
x

p(x) log p(x).

Units:

I log base 2 ⇒ entropy in bits

I log base e ⇒ entropy in nats
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Interpretation of Entropy

Entropy measures the uncertainty or spread of a distribution.
Example: binary variable X ∈ {0, 1}

I p(x = 1) = 0 or 1 ⇒ entropy = 0 (no uncertainty)

I p(x = 1) = 0.5 ⇒ entropy is maximal

Figure: Entropy peaks at p(1) = 0.5, minimal at extremes.
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Example: Computing Entropy

Example
For distribution p = [0.2, 0.3, 0.5]:

H[p] = −0.2 ln 0.2− 0.3 ln 0.3− 0.5 ln 0.5

= 1.03 nats
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Cross-Entropy

Cross-entropy between distributions p(X ) and q(X ):

H[p, q] = EX∼p[− log q(X )]

= −
∑
x

p(x) log q(x).

Connection to ML: Maximum likelihood training = minimizing cross-entropy
between:

I data distribution p

I model distribution q
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Kullback-Leibler Divergence

KL divergence (relative entropy) between p and q:

DKL[p‖q] = EX∼p

[
− log

q(X )

p(X )

]
= −

∑
x

p(x) log
q(x)

p(x)
=
∑
x

p(x) log
p(x)

q(x)
.

I Interpretation: A measure of how di�erent two distributions are.

I DKL[p‖q] ≥ 0

I Not symmetric: DKL[p‖q] 6= DKL[q‖p]
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KL-Divergence
Discrete Example
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KL as Entropy + Cross-Entropy

We can rewrite KL-divergence using entropy and cross-entropy:

DKL[p‖q] =
∑
x

p(x) log p(x)︸ ︷︷ ︸
−H[p]

−
∑
x

p(x) log q(x)︸ ︷︷ ︸
−H[p,q]

= H[p, q]− H[p].

Summary:

I Entropy: uncertainty of a single distribution

I Cross-entropy: expected code length using incorrect model

I KL-divergence: di�erence between distributions

These appear throughout machine learning and RL loss functions.
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Trust Region Optimization

Goal: Reduce variance and instability in policy gradient updates.

Problem:

I Simply increasing learning rate or step size → instability

I Large updates may collapse performance

I Need large improvements without deviating too far from the old policy

Trust Region idea:

I Constrain the update size during optimization

I Adaptively expand/shrink allowed region based on update quality
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Trust Region Policy Optimization (TRPO)

Concept:

I Maximize improvement in policy

I Prevent policy from moving too far from previous one

I Reduce update variance and prevent collapse

Objective:

J(θ) = Et

[
πθ(at |st)
πθold(at |st)

· At

]

Constraint (trust region):

Et

[
KL(πθold ||πθ)

]
≤ δ

Intuition: Take the largest safe policy step.
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TRPO Notes and Impact

Key points:

I Uses KL divergence to limit policy change

I Uses second-order optimization (complex)

I Stable and reliable, good for large problems

Applications:

I Robotic control (swimming, hopping, walking)

I Atari games

Downside: Algorithmically complex (requires second-order methods)

Implementations:

I OpenAI Spinning Up

I Stable Baselines
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Proximal Policy Optimization (PPO)

Motivation:

I Keep bene�ts of TRPO

I Remove complexity (no second-order derivatives)

I Make training faster and easier

PPO Variants:

I PPO-Penalty: Penalizes KL divergence in objective

I PPO-Clip: Clipping mechanism to limit policy change

Concept: Take a large step, but clip if too far from old policy
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PPO-Clip Objective

Clipped surrogate objective:

J(θ) = Et

[
min(rt(θ)At , clip(rt(θ), 1− ε, 1+ ε)At)

]
where:

rt(θ) =
πθ(at |st)
πθold(at |st)

E�ect:

I If update too large → clipped

I Controls destructive updates without explicit trust-region compute



Continuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

TRPO vs PPO

Feature TRPO PPO

Stability High High
Complexity High (2nd order) Low
Compute cost High Moderate
Constraint Hard KL bound Clipping / soft penalty
Use case Research stability Practical training default

Both are on-policy methods.

Outcome: PPO became standard baseline for deep RL tasks


	Continuous Policies
	Stochastic Policies
	Gym and MuJoCo
	REINFORCE

