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Continuous Policies

Information Theory

Information theory studies:
» how much information is present in distributions;
» how to compare different probability distributions.

We begin with the notion of information of an event.




Continuous Policies

Information of an Event

The information / of observing event x from distribution p(X):

I(x) = — log p(x).

Intuition:
» High probability = low information gain
» Low probability = high information gain
Extreme cases:
» p(x) =0 : I(x) =—log0d =00
» p(x)=1: I(x)=—logl=0




Continuous Policies

Information and Uncertainty

Information can be interpreted as the reduction of uncertainty after observing

X.
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Figure: Entropy of a binary variable as a function of p(x=1).




Continuous Policies

Entropy

Entropy H[p] of a discrete distribution p(X):

Hlp] = Ex-p[/(X)]
= Ex~p[— log p(X )]

= —Zp ) log p(x

Units:
» log base 2 = entropy in bits
» log base e = entropy in nats




Continuous Policies

Interpretation of Entropy

Entropy measures the uncertainty or spread of a distribution.
Example: binary variable X € {0,1}

» p(x =1) =0 or 1 = entropy = 0 (no uncertainty)

» p(x =1) = 0.5 = entropy is maximal

Figure:
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Entropy peaks at p(1) = 0.5, minimal at extremes.




Continuous Policies

Example: Computing Entropy

Example
For distribution p = [0.2, 0.3, 0.5]:

H[p] = —0.2In0.2 — 0.3In0.3 — 0.5In 0.5
= 1.03 nats




Continuous Policies

Cross-Entropy

Cross-entropy between distributions p(X) and g(X):

H[p. q] = Ex~p[—log q(X)]

:—Z ) log g(x).

Connection to ML: Maximum likelihood training = minimizing cross-entropy
between:

» data distribution p

» model distribution g




Continuous Policies

Kullback-Leibler Divergence

KL divergence (relative entropy) between p and g:

2

==Y p(x) |0g;’8 = p(x)log 58-

X

Dx.[plla] = Exp {— og

» Interpretation: A measure of how different two distributions are.
> Dxui[pllq] =0
> Not symmetric: Dk [pllq] # Dxr[ql|p]




Continuous Policies

KL-Divergence

Discrete Example
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Continuous Policies

KL as Entropy + Cross-Entropy

We can rewrite KL-divergence using entropy and cross-entropy:

Dxulpllgl = p(x)log p(x) 2}>I%q

—H[p] —Hlp,q]
= H[p. q] — Hp].

Summary:
» Entropy: uncertainty of a single distribution
» Cross-entropy: expected code length using incorrect model
» KL-divergence: difference between distributions
These appear throughout machine learning and RL loss functions.




Stochastic Policies

Trust Region Optimization

Goal: Reduce variance and instability in policy gradient updates.
Problem:

» Simply increasing learning rate or step size — instability

» Large updates may collapse performance

» Need large improvements without deviating too far from the old policy

Trust Region idea:
» Constrain the update size during optimization

» Adaptively expand/shrink allowed region based on update quality




Stochastic Policies

Trust Region Policy Optimization (TRPO)

Concept:
» Maximize improvement in policy
» Prevent policy from moving too far from previous one

» Reduce update variance and prevent collapse
Objective:

J(9) = E,

TOo1g (3t|5t

ﬁg(at|st)) _At]

Constraint (trust region):

Ee[KL(zgyIm)] <6

Intuition: Take the fargest safe policy step.




Stochastic Policies

TRPO Notes and Impact

Key points:
» Uses KL divergence to limit policy change
» Uses second-order optimization (complex)

» Stable and reliable, good for large problems

Applications:
» Robotic control (swimming, hopping, walking)

> Atari games

Downside: Algorithmically complex (requires second-order methods)

Implementations:
» OpenAl Spinning Up

» Stable Baselines




Stochastic Policies

Proximal Policy Optimization (PPO)

Motivation:
» Keep benefits of TRPO
» Remove complexity (no second-order derivatives)

» Make training faster and easier

PPO Variants:
» PPO-Penalty: Penalizes KL divergence in objective
» PPO-Clip: Clipping mechanism to limit policy change

Concept: Take a large step, but clip if too far from old policy




Stochastic Policies

PPO-Clip Objective

Clipped surrogate objective:
_/(0) = Et min(rt(G)At, C|ip(rt(9), 1-— €, 1 + E)At)

where:

F@(at‘st)
7Tgold (at‘st)

re(0) =

Effect:
» If update too large — clipped
» Controls destructive updates without explicit trust-region compute




Stochastic Policies

TRPO vs PPO

Feature TRPO PPO

Stability High High

Complexity High (2nd order) Low

Compute cost  High Moderate

Constraint Hard KL bound Clipping / soft penalty
Use case Research stability ~Practical training default

Both are on-policy methods.

Outcome: PPO became standard baseline for deep RL tasks
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