

CS-566 Deep Reinforcement Learning

Improved Policy-Based Learning II: Trust Region Methods

Nazar Khan
Department of Computer Science
University of the Punjab

Information Theory

Information theory studies:

- ▶ how much information is present in distributions;
- ▶ how to compare different probability distributions.

We begin with the notion of *information* of an event.

Information of an Event

The information I of observing event x from distribution $p(X)$:

$$I(x) = -\log p(x).$$

Intuition:

- ▶ High probability \Rightarrow low information gain
- ▶ Low probability \Rightarrow high information gain

Extreme cases:

- ▶ $p(x) = 0$: $I(x) = -\log 0 = \infty$
- ▶ $p(x) = 1$: $I(x) = -\log 1 = 0$

Information and Uncertainty

Information can be interpreted as the reduction of uncertainty after observing X .

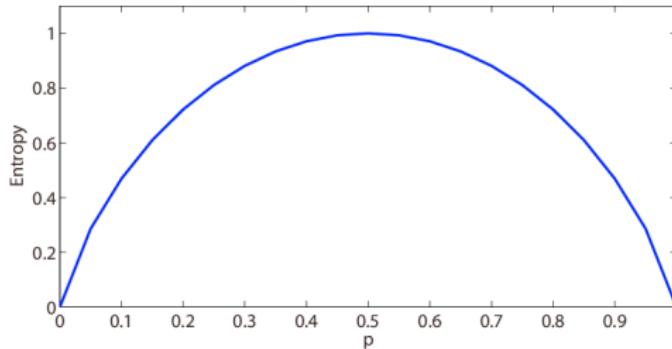


Figure: Entropy of a binary variable as a function of $p(x=1)$.

Entropy

Entropy $H[p]$ of a discrete distribution $p(X)$:

$$\begin{aligned} H[p] &= \mathbb{E}_{X \sim p}[I(X)] \\ &= \mathbb{E}_{X \sim p}[-\log p(X)] \\ &= - \sum_x p(x) \log p(x). \end{aligned}$$

Units:

- ▶ log base 2 \Rightarrow entropy in *bits*
- ▶ log base e \Rightarrow entropy in *nats*

Interpretation of Entropy

Entropy measures the **uncertainty** or **spread** of a distribution.

Example: binary variable $X \in \{0, 1\}$

- ▶ $p(x = 1) = 0$ or $1 \Rightarrow$ entropy = 0 (no uncertainty)
- ▶ $p(x = 1) = 0.5 \Rightarrow$ entropy is maximal

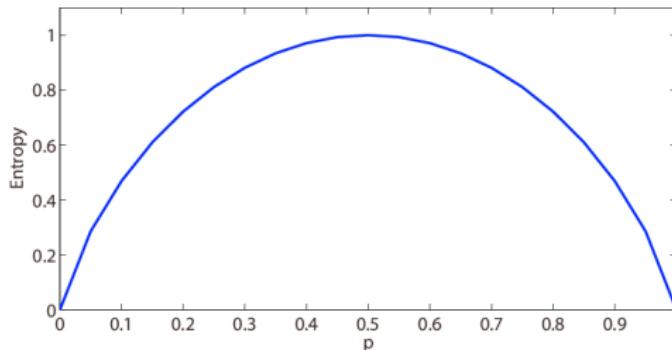


Figure: Entropy peaks at $p(1) = 0.5$, minimal at extremes.

Example: Computing Entropy

Example

For distribution $p = [0.2, 0.3, 0.5]$:

$$\begin{aligned} H[p] &= -0.2 \ln 0.2 - 0.3 \ln 0.3 - 0.5 \ln 0.5 \\ &= 1.03 \text{ nats} \end{aligned}$$

Cross-Entropy

Cross-entropy between distributions $p(X)$ and $q(X)$:

$$\begin{aligned} H[p, q] &= \mathbb{E}_{X \sim p}[-\log q(X)] \\ &= - \sum_x p(x) \log q(x). \end{aligned}$$

Connection to ML: Maximum likelihood training = minimizing cross-entropy between:

- ▶ data distribution p
- ▶ model distribution q

Kullback-Leibler Divergence

KL divergence (relative entropy) between p and q :

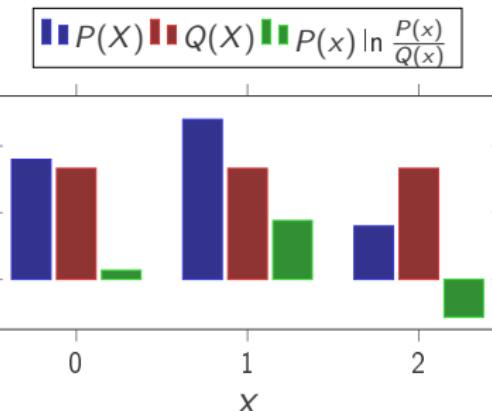
$$\begin{aligned} D_{\text{KL}}[p\|q] &= \mathbb{E}_{X \sim p} \left[-\log \frac{q(X)}{p(X)} \right] \\ &= - \sum_x p(x) \log \frac{q(x)}{p(x)} = \sum_x p(x) \log \frac{p(x)}{q(x)}. \end{aligned}$$

- ▶ **Interpretation:** A measure of how different two distributions are.
- ▶ $D_{\text{KL}}[p\|q] \geq 0$
- ▶ Not symmetric: $D_{\text{KL}}[p\|q] \neq D_{\text{KL}}[q\|p]$

KL-Divergence

Discrete Example

	X		
	0	1	2
$P(x)$	$\frac{9}{25}$	$\frac{12}{25}$	$\frac{4}{25}$
$Q(x)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
$\frac{P(x)}{Q(x)}$	1.08	1.44	0.48
$\ln \frac{P(x)}{Q(x)}$	0.077	0.365	-0.734
$P(x) \ln \frac{P(x)}{Q(x)}$	0.028	0.175	-0.117



$$\begin{aligned}
 D_{\text{KL}}(P\|Q) &= \sum_x P(x) \ln \frac{P(x)}{Q(x)} \\
 &= \frac{9}{25} \ln \frac{9/25}{1/3} + \frac{12}{25} \ln \frac{12/25}{1/3} + \frac{4}{25} \ln \frac{4/25}{1/3} = 0.0853
 \end{aligned}$$

KL as Entropy + Cross-Entropy

We can rewrite KL-divergence using entropy and cross-entropy:

$$\begin{aligned} D_{\text{KL}}[p\|q] &= \underbrace{\sum_x p(x) \log p(x)}_{-H[p]} - \underbrace{\sum_x p(x) \log q(x)}_{-H[p,q]} \\ &= H[p, q] - H[p]. \end{aligned}$$

Summary:

- ▶ Entropy: uncertainty of a single distribution
- ▶ Cross-entropy: expected code length using incorrect model
- ▶ KL-divergence: difference between distributions

These appear throughout machine learning and RL loss functions.

Trust Region Optimization

Goal: Reduce variance and instability in policy gradient updates.

Problem:

- ▶ Simply increasing learning rate or step size → instability
- ▶ Large updates may collapse performance
- ▶ Need large improvements without deviating too far from the old policy

Trust Region idea:

- ▶ Constrain the update size during optimization
- ▶ Adaptively expand/shrink allowed region based on update quality

Trust Region Policy Optimization (TRPO)

Concept:

- ▶ Maximize improvement in policy
- ▶ Prevent policy from moving too far from previous one
- ▶ Reduce update variance and prevent collapse

Objective:

$$J(\theta) = \mathbb{E}_t \left[\frac{\pi_\theta(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)} \cdot A_t \right]$$

Constraint (trust region):

$$\mathbb{E}_t [\text{KL}(\pi_{\theta_{\text{old}}} || \pi_\theta)] \leq \delta$$

Intuition: Take the *largest safe policy step*.

TRPO Notes and Impact

Key points:

- ▶ Uses KL divergence to limit policy change
- ▶ Uses second-order optimization (complex)
- ▶ Stable and reliable, good for large problems

Applications:

- ▶ Robotic control (swimming, hopping, walking)
- ▶ Atari games

Downside: Algorithmically complex (requires second-order methods)

Implementations:

- ▶ OpenAI Spinning Up
- ▶ Stable Baselines

Proximal Policy Optimization (PPO)

Motivation:

- ▶ Keep benefits of TRPO
- ▶ Remove complexity (no second-order derivatives)
- ▶ Make training faster and easier

PPO Variants:

- ▶ **PPO-Penalty:** Penalizes KL divergence in objective
- ▶ **PPO-Clip:** Clipping mechanism to limit policy change

Concept: Take a large step, but **clip** if too far from old policy

PPO-Clip Objective

Clipped surrogate objective:

$$J(\theta) = \mathbb{E}_t \left[\min(r_t(\theta)A_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)A_t) \right]$$

where:

$$r_t(\theta) = \frac{\pi_\theta(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)}$$

Effect:

- ▶ If update too large \rightarrow clipped
- ▶ Controls destructive updates without explicit trust-region compute

TRPO vs PPO

Feature	TRPO	PPO
Stability	High	High
Complexity	High (2nd order)	Low
Compute cost	High	Moderate
Constraint	Hard KL bound	Clipping / soft penalty
Use case	Research stability	Practical training default

Both are on-policy methods.

Outcome: PPO became standard baseline for deep RL tasks