CS-568 Deep Learning

Language Modelling

Nazar Khan Department of Computer Science University of the Punjab

Outline

- 1. Modelling input text as numeric vectors
- 2. Text generation
- 3. Language translation

Modelling text as numeric vectors

- Corpus: Consider a dataset of news articles.
- ► *Vocabulary*: Set Vⁱⁿ of (all or most frequent) unique words in the corpus.
- Assume size of vocabulary is Kⁱⁿ words.
- Each word can be represented using 1-of-K coding.
- ▶ For example, *k*-th word in *V* can be represented as

$$\mathbf{y}_{k} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{1} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$

where 1 appears at the k-th index.

Inefficiency of 1-hot vectors

- ▶ 1-of-K coding is
 - 1. tremendously inefficient since K^2 numbers represent K words only, and
 - **2.** *highly unrealistic* since 1-hot vectors are orthogonal while words have similarities.

Workaround: Embedding Matrix

Project word vectors onto lower dimensional space via projection/embedding matrix E.

$$e = Ey$$

- Matrix *E* is of size $D \times K^{\text{in}}$ where $D \ll K^{\text{in}}$.
- Optimal matrix *E* can be learned as part of the network parameters.

	Output		

Output

- Let output language have a vocabulary V^{out} of K^{out} words.
- Then output layer is softmax on K^{out} neurons.

	Loss		

Loss

► For a sentence of *T_n* words, we can use cross-entropy between output sequence and target sequence.

$$\mathcal{L}_{n}\left(\left(\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(T_{n})}\right), \left(\mathbf{t}^{(1)}, \mathbf{t}^{(2)}, \dots, \mathbf{t}^{(T_{n})}\right)\right) = -\sum_{t=1}^{T_{n}} \sum_{j=1}^{K^{\text{out}}} t_{j}^{(t)} \ln y_{j}^{(t)}$$
$$= -\sum_{t=1}^{T_{n}} \ln y_{\text{target}}^{(t)}$$

- Training can be performed using BPTT on a corpus (typically) containing millions of words.
- Each sentence constitutes one training example.

Text Generation

- ▶ Problem: generate a sequence of words $w^{(1)}, w^{(2)}, \ldots$
- We will add two new words to each vocabulary.
 - sos: start of sentence
 - eos: end of sentence

Solution:

- 1. At time t = 1, feed $w^{(0)}$ the sos word. That is, starting vector is $\mathbf{x}^{(0)} = \mathbf{0}$.
- **2.** Compute probability distribution $\mathbf{y}^{(1)}$.
- 3. Sample a word $w^{(1)}$ from this distribution.
 - 3.1 argmax, or
 - 3.2 random sampling based on probabilities in $\mathbf{y}^{(1)}$, or
 - 3.3 any other sampling method.
- 4. At every time step t = 1, ..., feed w(t 1) as input, generate probability distribution $\mathbf{y}^{(t)}$ and sample next word w(t) from it.
- 5. Continue until eos is sampled.

Encoder that produces $h^{(3)}$ as the encoding of the whole input sequence.

		Language Translation	

Language Translation A better decoder

Make probability distribution $\mathbf{y}^{(t+1)}$ depend on *word drawn* from $\mathbf{y}^{(t)}$ as well.

$$y_{j}^{(t)} = P(o^{(t)} = V_{j} | \underbrace{o^{(t-1)}, o^{(t-2)}, \dots, o^{(1)}}_{\text{oll words output so for}}, \underbrace{w^{(1)}, w^{(2)}, \dots, w^{(T_{\text{in}})}}_{\text{oll input words}})$$

all words output so far

all input words

Language Translation Testing: Finding the most likely output

- ► As mentioned earlier, sampling of words can be accomplished via
 - **1.** argmax on each $\mathbf{y}^{(t)}$, or
 - **2.** random sampling from each $\mathbf{y}^{(t)}$
- Both sampling methods produce locally optimal words.
- A better but costlier alternative is to find a globally optimal output sequence.

At time t = 1, pick the *M* most probable options instead of all K^{out} options.

t = 1

Conditioned on each option at t = 1, pick the *M* most probable options at t = 2.

t = 1 t = 2

Conditioned on each option at t = 1, pick the *M* most probable options at t = 2.

t = 1 t = 2

Conditioned on each option at t = 1, pick the *M* most probable options at t = 2.

t = 1 t = 2

Conditioned on each *path* at t = 2, pick the *M* most probable options at t = 3.

- A sequence is terminated when eos is drawn.
- When no unterminated sequence remains, select the most likely sequence across all terminating sequences.

Summary

- ▶ Words in a language can be modeled as 1-hot vectors.
- Learnable embedding matrices can reduce dimensions.
- Text generation models are stochastic parrots.
- Language translation can be achieved through the encoder-decoder framework.
- Beam-search makes decoding approximate but tractable.