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Outline

1. Modelling input text as numeric vectors
2. Text generation
3. Language translation
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Modelling text as numeric vectors

I Corpus: Consider a dataset of news articles.
I Vocabulary: Set V in of (all or most frequent) unique words in the corpus.
I Assume size of vocabulary is K in words.
I Each word can be represented using 1-of-K coding.
I For example, k-th word in V can be represented as

yk =



0
0
...
1
0
...
0


where 1 appears at the k-th index.
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Inefficiency of 1-hot vectors

I 1-of-K coding is
1. tremendously inefficient since K 2 numbers represent K words only, and
2. highly unrealistic since 1-hot vectors are orthogonal while words have

similarities.
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Workaround: Embedding Matrix

I Project word vectors onto lower dimensional space via
projection/embedding matrix E .

e = Ey

I Matrix E is of size D × K in where D << K in.
I Optimal matrix E can be learned as part of the network parameters.
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Output

I Let output language have a vocabulary V out of K out words.
I Then output layer is softmax on K out neurons.
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Loss

I For a sentence of Tn words, we can use cross-entropy between output
sequence and target sequence.

Ln
((

y(1), y(2), . . . , y(Tn)
)
,
(
t(1), t(2), . . . , t(Tn)

))
= −

Tn∑
t=1

Kout∑
j=1

t
(t)
j ln y

(t)
j

= −
Tn∑
t=1

ln y
(t)
target

I Training can be performed using BPTT on a corpus (typically) containing
millions of words.

I Each sentence constitutes one training example.
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Text Generation

I Problem: generate a sequence of words w (1),w (2), . . . .
I We will add two new words to each vocabulary.

I sos: start of sentence
I eos: end of sentence

I Solution:
1. At time t = 1, feed w (0) the sos word. That is, starting vector is x(0) = 0.
2. Compute probability distribution y(1).
3. Sample a word w (1) from this distribution.

3.1 argmax, or
3.2 random sampling based on probabilities in y(1), or
3.3 any other sampling method.

4. At every time step t = 1, . . . , feed w(t − 1) as input, generate probability
distribution y(t) and sample next word w(t) from it.

5. Continue until eos is sampled.
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Language Translation

Zaid slapped Khalidزید نے خالد کو تھپڑ مارا
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Language Translation
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Language Translation

Encoder that produces h(3) as the
encoding of the whole input sequence.

Decoder that uses encoding h(3) to
generate the output sentence as a
sequence of words from the output
vocabulary.
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Language Translation
A better decoder

Zaid slapped Khalid

Encoder

eos sos

کرسی

کرسی

امید

ہاتھی

تاریکی

تاریکی

مقبول

Decoder

Make probability distribution y(t+1) depend on word drawn from y(t) as well.

y
(t)
j = P(o(t) = Vj | o(t−1), o(t−2), . . . , o(1)︸ ︷︷ ︸

all words output so far

,w (1),w (2), . . . ,w (Tin)︸ ︷︷ ︸
all input words

)
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Language Translation
Training

Zaid slapped Khalid

Encoder

eos sos

کرسی

کرسی

امید

ہاتھی

تاریکی

تاریکی

مقبول

Decoder

زید نے مارا eos
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Language Translation
Testing: Finding the most likely output

I As mentioned earlier, sampling of words can be accomplished via
1. argmax on each y(t), or
2. random sampling from each y(t)

I Both sampling methods produce locally optimal words.
I A better but costlier alternative is to find a globally optimal output

sequence.
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Beam Search

At time t = 1, pick the M most probable options instead of all K out options.

Top-3
characters
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Beam Search

Conditioned on each option at t = 1, pick the M most probable options at
t = 2.

Top-3
characters
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Beam Search

Conditioned on each option at t = 1, pick the M most probable options at
t = 2.

Top-3
characters
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Beam Search

Conditioned on each option at t = 1, pick the M most probable options at
t = 2.

Top-3
characters
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Beam Search

Conditioned on each path at t = 2, pick the M most probable options at t = 3.

Top-3
characters
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Beam Search

I A sequence is terminated when eos is drawn.
I When no unterminated sequence remains, select the most likely sequence

across all terminating sequences.
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Summary

I Words in a language can be modeled as 1-hot vectors.
I Learnable embedding matrices can reduce dimensions.
I Text generation models are stochastic parrots.
I Language translation can be achieved through the encoder-decoder

framework.
I Beam-search makes decoding approximate but tractable.
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