
CS-568 Deep Learning

Loss Functions and Activation Functions for Machine Learning

Nazar Khan
Department of Computer Science

University of the Punjab



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Pre-requisites

I Before looking at how a multilayer perceptron can be trained, one must
study

1. Gradient computation
2. Gradient descent
3. Loss functions for machine learning
4. Smooth activation functions

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Loss Functions for Machine Learning

Notation:
I Let x ∈ R denote a univariate input.
I Let x ∈ RD denote a multivariate input.
I Same for targets t ∈ R and t ∈ RK .
I Same for outputs y ∈ R and y ∈ RK .
I Let θ denote the set of all learnable parameters of a machine

learning model.

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Loss Functions for Machine Learning
Regression

I Univariate

L(θ) =
1
2

N∑
n=1

(yn − tn)
2

I Multivariate

L(θ) =
1
2

N∑
n=1

‖yn − tn‖2

I Known as half-sum-squared-error (SSE) or `2-loss.
I Verify that both losses are 0 when outputs match targets for all n.

Otherwise, both losses are greater than 0.

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Background
Probability and Negative of Natural Logarithm

I Logarithm is a monotonically increasing function.
I Probability lies between 0 and 1.
I Between 0 and 1, logarithm is negative.
I So − ln(p(x)) approaches ∞ for p(x) = 0 and 0 for p(x) = 1.
I Can be used as a loss function.

0 20 40 60 80 100
−8

−6

−4

−2

0

2

4

x

ln
(x
)

ln(x)

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

p(x)

ln
(p
(x
))

ln(p(x))

0 0.2 0.4 0.6 0.8 1

0

2

4

6

p(x)

−
ln
(p
(x
))

− ln(p(x))

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Loss Functions for Machine Learning
Binary Classification

I For two-class classification, targets can be binary.
I tn = 0 if xn belongs to class C0.
I tn = 1 if xn belongs to class C1.

I If output yn can be restricted to lie between 0 and 1, we can treat it as
probability of xn belonging to class C1. That is, yn = P(C1|xn).

I Then 1− yn = P(C0|xn).
I Ideally,

I yn should be 1 if xn ∈ C1, and
I 1− yn should be 1 if xn ∈ C0.

I Equivalently,
I − ln yn should be 0 if xn ∈ C1, and
I − ln(1− yn) should be 0 if xn ∈ C0.

I So depending upon tn, either − ln yn or − ln(1− yn) should be considered
as loss.

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Loss Functions for Machine Learning
Binary Classification

I Using tn to pick the relevant loss, we can write total loss as

L(θ) = −
N∑

n=1

tn ln yn + (1− tn) ln(1− yn)

I Known as binary cross-entropy (BCE) loss.
I Verify that BCE loss is 0 when outputs match targets for all n. Otherwise,

loss is greater than 0.

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Loss Functions for Machine Learning
Multiclass Classification

I For multiclass classification, targets can be represented
using 1-of-K coding. Also known as 1-hot vectors.
I 1-hot vector: only one component is 1. All the rest

are 0.
I If tn3 = 1, then xn belongs to class 3.

I If outputs of K neurons can be restricted to
1. 0 ≤ ynk ≤ 1, and
2.

∑K
k=1 ynk = 1,

then we can treat outputs as probabilities.
I Later, we shall see activation functions that produce

per-class probability values.

tn =


0
0
1
0
0



yn =


P(C1|xn)
P(C2|xn)
P(C3|xn)
P(C4|xn)
P(C5|xn)



Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Loss Functions for Machine Learning
Multiclass Classification

I Similar to BCE loss, we can use tnk to pick the relevant negative log loss
and write overall loss as

L(θ) = −
N∑

n=1

K∑
k=1

tnk ln ynk

I Known as multiclass cross-entropy (MCE) loss.
I Verify that MCE loss is 0 when outputs match targets for all n.

Otherwise, loss is greater than 0.

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Convexity

I A function f (x) is convex if every chord lies on or
above the function.

I Can be minimized by finding stationary point.
There will only be one.

I Loss functions for neural networks are not convex.
I They have multiple local minima and maxima.
I Can be minimized via gradient descent.

Global
Minimum

Local
Minimum

Local
Maximum

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Second Derivative

I First derivative equal to zero determines stationary points.
I Second derivative distinguishes between maxima and minima.

I At maximum, second derivative is negative.
I At minimum, second derivative is positive.

I But all of the above applies to functions in 1-dimension.
I In higher dimensions, stationary point is still defined by ∇f = 0.
I But there will be a second derivative in each dimension – some might be

positive and some negative.
I So how can we distinguish between maxima and minima in higher

dimensions?

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Higher Dimensions

I In D-dimensions, maxima and minima are distinguished via a special
D × D matrix of second derivatives known as the Hessian matrix.

H =


∂2f

∂x1∂x1
∂2f

∂x1∂x2
. . . ∂2f

∂x1∂xD
∂2f

∂x2∂x1
∂2f

∂x2∂x2
. . . ∂2f

∂x2∂xD
...

...
. . .

...
∂2f

∂xD∂x1
∂2f

∂xD∂x2
. . . ∂2f

∂xD∂xD


I If xTHx ≥ 0 for all x 6= 0, then H is positive semi-definite.
I This is equivalent to H having non-negative eigenvalues.

If Hessian matrix at a stationary point x is positive semi-definite,
then x is a (local) minimizer of f .

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Matrix and Vector Derivatives

For scalar function f ∈ R,

∇vf =
∂f

∂v
=

[
∂f
∂v1

∂f
∂v2

. . . ∂f
∂vD

]

∇Mf =
∂f

∂M
=


∂f

∂M11
∂f

∂M12
. . . ∂f

∂M1n
∂f

∂M21
∂f

∂M22
. . . ∂f

∂M2n
...

...
. . .

...
∂f

∂Mm1
∂f

∂Mm2
. . . ∂f

∂Mmn


For vector function f ∈ RK ,

∇vf =


∇vf1
∇vf2
...
∇vfK

 =


∂f1
∂v1

∂f1
∂v2

. . . ∂f1
∂vD

∂f2
∂v1

∂f2
∂v2

. . . ∂f2
∂vD

...
...

. . .
...

∂fK
∂v1

∂fK
∂v2

. . . ∂fK
∂vD


Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Activation Functions

I Recall that a perceptron has a non-differentiable activation function, i.e.,
step function.
I Zero-derivative everywhere except at 0 where it is non-differentiable.

I Prevents gradient descent.
I Can we use a smooth activation function that behaves similar to a step

function?
I Perceptron with a smooth activation function is called a neuron.
I Neural networks are also called multilayer perceptrons (MLP) even though

they do not contain any perceptron.

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Logistic Sigmoid Function

I For a ∈ R, the logistic sigmoid function is given by σ(a) = 1
1+e−a

I Sigmoid means S-shaped.
I Maps −∞ ≤ a ≤ ∞ to the range 0 ≤ σ ≤ 1. Also called squashing

function.
I Can be treated as a probability value.
I Symmetry σ(−a) = 1− σ(a). Prove it.
I Easy derivative σ′ = σ(1− σ). Prove it.

a

σ(a)

0.5

1

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Activation Functions

Regression
I Univariate: use 1 output neuron with identity activation function

y(a) = a.
I Multivariate: use K output neurons with identity activation functions

y(ak) = ak .
Classification
I Binary: use 1 output neuron with logistic sigmoid y(a) = σ(a).
I Multiclass: use K output neurons with softmax activation function.

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Softmax Activation Function

What happens inside a softmax layer
Softmax

layer

�1�1 �1

�2�2 �2

�3�3 �3

�
�
1

∑3

�=1
���

�
�
2

∑3

�=1
���

�
�
3

∑3

�=1
���

=

I For real numbers a1, . . . , aK , the softmax function is given by

y(ak ; a1, a2, . . . , aK ) =
eak∑K
i=1 e

ai

I Output of k-th neuron depends on activations of all neurons in the same
layer.

I Softmax is ≈ 1 when ak >> aj ∀j 6= k and ≈ 0 otherwise.

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Softmax Activation Function

I Provides a smooth (differentiable) approximation to finding the index of
the maximum element.
I Compute softmax for 1, 10, 100.
I Does not work everytime.

I Compute softmax for 1, 2, 3. Solution: multiply by 100.
I Compute softmax for 1, 10, 1000. Solution: subtract maximum before

computing softmax.

I Also called the normalized exponential function.
I Since 0 ≤ yk ≤ 1 and

∑K
k=1 yk = 1, softmax outputs can be treated as

probability values.
I Show that ∂yk

∂aj
= yk(δjk − yj) where δjk = 1 if j = k and 0 otherwise.

Nazar Khan Deep Learning



Loss Functions Minimization Matrix Calculus Activation Functions Summary

Summary

I Inputs and outputs can be univariate as well multivariate.
I Regression requires SSE loss.
I Classification requires cross-entropy loss.
I Minimization corresponds to finding the point where derivate of loss is

zero.
I Matrix and vector calculus makes calculations and computation cleaner

and faster.
I Next lecture: Training MLPs.

Nazar Khan Deep Learning


	Loss Functions
	Minimization
	Matrix Calculus
	Activation Functions
	Summary

