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Gates Info flow Variations

Weakness of standard RNN

I We have already seen that RNNs do not possess long-term memory.
I Input at time t is soon forgotten because of the recurrent weights W 11.
I Would be nice to decide what and how much to forget/remember based

on the input itself.

RNN Cell: Operations at the hidden layer.
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Gates Info flow Variations

Long Short-Term Memory (LSTM)
Building blocks

Let v(t) =
[
h(t−1)

x(t)

]
∈ R(M+D)×1

Perform 4 affine transformations of v(t) followed by non-linearities.

f(t) = σ
(
Wf v(t) + bf

)
(1)

i(t) = σ
(
Wiv(t) + bi

)
(2)

o(t) = σ
(
Wov(t) + bo

)
(3)

c̃(t) = tanh
(
Wcv(t) + bc

)
(4)

All 4 matrices of size M × (M + D) and therefore all 4 transformations
produce M-dimensional vectors.
Vectors f(t), i(t), o(t) contain values in (0, 1) and c̃(t) in (−1, 1).
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Gates Info flow Variations

LSTM
Putting everything together

LSTM Cell: Operations at the hidden layer.

I Vector c(t) is interpreted as the cell state.
I Cell state is recurrent as well.
I Notice that c(t) is not forced to contain values in (0, 1) or (−1, 1).
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Gates Info flow Variations

Role of the Gates
f(t): Forget Gate

f(t) = σ
(
Wf v(t) + bf

)
c
(t)
j = f

(t)
j c

(t−1)
j + i

(t)
j c̃

(t)
j

I f
(t)
j ∈ (0, 1) due to the logistic sigmoid.

I If f (t)j = 0, then c
(t−1)
j is forgotten in the next state c

(t)
j .

I If f (t)j = 1, then c
(t−1)
j is retained completely in the next state c

(t)
j .

f(t) acts as a forget gate on the previous cell state c(t).
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Gates Info flow Variations

Role of the Gates
i(t): Input Gate

i(t) = σ
(
Wiv(t) + bi

)
c
(t)
j = f

(t)
j c

(t−1)
j + i

(t)
j c̃

(t)
j

I i
(t)
j ∈ (0, 1) due to the logistic sigmoid.

I If i (t)j = 0, then no new information will be added to c
(t)
j .

I If i (t)j = 1, then the potential cell state c̃
(t)
j is added completely in the

next state c
(t)
j irrespective of forget level.

i(t) acts as an input gate on the potential cell state c̃(t).
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Gates Info flow Variations

Role of the Gates
o(t): Output Gate

o(t) = σ
(
Wov(t) + bo

)
h
(t)
j = o

(t)
j tanh(c

(t)
j )

I o
(t)
j ∈ (0, 1) due to the logistic sigmoid.

I If o(t)j = 0, then cell state c
(t)
j will be completely hidden.

I If o(t)j = 1, then cell state c
(t)
j is completely exposed in both space (↑)

and time (→).

o(t) acts as an output gate on c(t).
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Gates Info flow Variations

LSTM

LSTM Cell: Operations at the hidden layer in detail.
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Gates Info flow Variations

Information flow

I Depending on f(t) and i(t), an LSTM cell has the ability to push through
its cell state c(t−1) exactly or almost unchanged into the next time step
c(t).

I This ensures flow of the cell state (memory) through time. Hence
long-term memory.

I This is similar to how other deep learning techniques ensure flow of
information in space.
I ReLU
I Weight initialization
I Batchnorm
I Residual block
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Gates Info flow Variations

Remembering the past

I Consider a sentence containing brackets.
England (last year’s winners) are expected to put up a good fight.

I The LSTM cell can learn to set cj = 1 if an opening bracket is seen at
time t.

I It can also learn to keep cj = 1 for a long time until a closing bracket is
seen in the input.

I Some other ck can similarly be used to handle nested brackets and so on.
I Even the value of cj itself can be used to signify the level of nesting. It all

depends on how and what the LSTM learns.
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Gates Info flow Variations

Peephole Connections

I Allow gates to look at the cell state as well before deciding what to
forget, what to add, and what to output.

v(t)f ,i =

c(t−1)

h(t−1)

x(t)

 ∈ R(2M+D)×1

v(t)o =

 c(t)

h(t−1)

x(t)

 ∈ R(2M+D)×1
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Gates Info flow Variations

Coupled forget and input

I Use a single forget gate for interpolation.

c(t) = f(t) � c(t−1) + (1− f(t))� c̃(t)

I Fewer parameters due to removal of input gate.
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Gates Info flow Variations

Gated Recurrence Unit (GRU)

I Coupled forget and input gates.
I Merged hidden and cell state.

z(t) = σ
(
Wzv(t) + bz

)
r(t) = σ

(
Wrv(t) + br

)
h̃(t) = tanh

(
Wh[r(t) � h(t−1); x(t)] + bh

)
h(t) =

(
1− z(t)

)
� h(t−1) + z(t) � h̃(t)

I Always expose the hidden state.
I In some variants, the weight matrices can be set to 0.
I In other variants, the bias vectors can be set to 0.
I Fewer parameters, faster training, learning from lesser data.
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Gates Info flow Variations

Summary

I RNNs do not retain long-term context in practice.
I An LSTM cell has the ability to push through its cell state exactly or

almost unchanged into the next time step.
I This ensures flow of the cell state (memory) through time. Hence

long-term memory.
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