# CS-568 Deep Learning 

Matrix and Vector Calculus

Nazar Khan<br>Department of Computer Science<br>University of the Punjab

## Matrix Calculus

- Specialised notation for multivariate calculus.
- Simplifies operations such as finding the minimum of a multivariate function.
- Different conventions exist. You may choose any as long as you remain consistent.
- Purpose of these slides is to set the convention for the rest of the course.


## Notation

- Scalars are denoted by lower-case letters like $s, a, b$.
- Vectors are denoted by lower-case bold letters like $\mathbf{x}, \mathbf{y}, \mathbf{v}$.
- Matrices are denoted by upper-case bold letters like M, D, A.
- Any vector $\mathrm{x} \in \mathbb{R}^{d}$ is by default a column vector.

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]
$$

- The corresponding row vector is obtained as $\mathbf{x}^{T}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{d}\end{array}\right]$.


## Vectors

For vectors $\mathbf{x}, \mathrm{y} \in \mathbb{R}^{d}$ and $\mathbf{z} \in \mathbb{R}^{k}$

- Inner product $\mathbf{x}^{\top} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{d} y_{d}$ is a scalar value. Also called dot product or scalar product.
- Other representations: $\mathbf{x} \cdot \mathbf{y},(\mathbf{x}, \mathbf{y})$ and $\langle\mathbf{x}, \mathbf{y}\rangle$.
- Represents similarity of vectors.
- If $\mathbf{x}^{\top} \mathbf{y}=0$, then $\mathbf{x}$ and $\mathbf{y}$ are orthogonal vectors (in 2D, this means they are perpendicular).
- Euclidean norm of vector

$$
\|\mathbf{x}\|=\sqrt{\mathbf{x}^{T} \mathbf{x}}=\sqrt{x_{1} x_{1}+x_{2} x_{2}+\cdots+x_{d} x_{d}}
$$

represents the magnitude of the vector.

- Unit vector has norm 1. Also called normalised vector.
- If $\|\mathrm{x}\|=1$ and $\|\mathbf{y}\|=1$, and $\mathrm{x}^{\top} \mathbf{y}=0$, then x and y are orthonormal vectors.
- Outer-product $\mathbf{x z}^{T}$ is a $d \times k$ matrix.


## Matrix and Vector Calculus

For scalars $x, y \in \mathbb{R}$, vectors $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{y} \in \mathbb{R}^{k}$ and matrices $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$, we will use the following conventions for writing matrix and vector derivatives.

Scalar w.r.t vector: $\nabla_{x} y=\frac{\partial y}{\partial x}=\left[\begin{array}{llll}\frac{\partial y}{\partial x_{1}} & \frac{\partial y}{\partial x_{2}} & \cdots & \frac{\partial y}{\partial x_{d}}\end{array}\right]$
Vector w.r.t scalar: $\nabla_{x} y=\frac{\partial y}{\partial x}=\left[\begin{array}{c}\frac{\partial y_{1}}{} \\ \frac{y_{2}}{\partial x} \\ \vdots \\ \vdots \\ \frac{\partial y_{k}}{\partial x}\end{array}\right]$
Vector w.r.t vector: $\nabla_{\mathbf{x}} \mathbf{y}=\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{c}\nabla_{x} y_{1} \\ \nabla_{x} y_{2} \\ \vdots \\ \nabla_{x} y_{k}\end{array}\right]=\underbrace{\left[\begin{array}{cccc}\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{x_{2}}} \\ \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{2}}{\partial x_{d}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{k}}{\partial x_{1}} & \frac{\partial y_{k}}{\partial x_{2}} & \cdots & \frac{\partial y_{k}}{\partial x_{d}}\end{array}\right]}_{k \times d}$

## Matrix and Vector Calculus

Scalar w.r.t matrix: $\nabla \mathbf{x} y=\frac{\partial y}{\partial \mathbf{X}}=\left[\begin{array}{cccc}\frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{m 1}} \\ \frac{\partial y}{\partial x_{12}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{m 2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{1 n}} & \frac{\partial y}{\partial x_{2 n}} & \cdots & \frac{\partial y}{\partial x_{m n}}\end{array}\right]$

Matrix w.r.t scalar: $\nabla_{x} \mathbf{Y}=\frac{\partial \mathbf{Y}}{\partial x}=\left[\begin{array}{cccc}\frac{\partial y_{11}}{\partial x} & \frac{\partial y_{12}}{\partial x} & \cdots & \frac{\partial y_{1 n}}{\partial x} \\ \frac{\partial y_{12}}{\partial x} & \frac{\partial y_{22}}{\partial x} & \cdots & \frac{y_{2 n}}{\partial x} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{m 1}}{\partial x} & \frac{\partial y_{m 2}}{\partial x} & \cdots & \frac{\partial y_{m n}}{\partial x}\end{array}\right]$

## Matrix and Vector Calculus

For vectors $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{d}$ and matrices $\mathrm{M} \in \mathbb{R}^{k \times d}$ and $\mathrm{A} \in \mathbb{R}^{d \times d}$
$-\nabla_{\mathbf{x}}\left(\mathbf{y}^{\top} \mathbf{x}\right)=\nabla_{\mathbf{x}}\left(\mathrm{x}^{\top} \mathbf{y}\right)=\mathrm{y}^{\top}$
$-\nabla_{\mathrm{x}}(\mathrm{Mx})=\mathrm{M}$

- $\nabla_{\mathrm{x}}\left(\mathrm{x}^{T} \mathrm{Ax}\right)=\mathrm{x}^{T}\left(\mathrm{~A}^{T}+\mathrm{A}\right)$
- For symmetric $\mathbf{A}, \nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)=2(\mathbf{A} \mathbf{x})^{T}$

Prove all of the derivatives given above.

