CS-570 Computer Vision

Nazar Khan

Department of Computer Science University of the Punjab

10. Deep Learning

Why Deep Learning?

- ▶ Most CV problems are increasingly being solved via Deep Learning (DL).
- > DL mimics learning in biological brains.
- DL can sometimes beat human performance.

What is Deep Learning?

- ▶ Imagine that you have a dataset of input vectors $x_1, x_2, ..., x_N$ that you want to map to corresponding targets $t_1, t_2, ..., t_N$.
- ► Assume you have function y = f₁(x; w₁) that maps inputs x to outputs y using parameters w₁.
- You would want parameters w_1 to be such that f_1 maps inputs to targets.
- Any parameters w_1 can be evaluated via an *error function* over the dataset

$$E(\mathbf{w}_1) = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2 = \frac{1}{2} \sum_{n=1}^{N} (f_1(\mathbf{x}_n; \mathbf{w}_1) - t_n)^2$$

Optimal w₁^{*} can be found as

$$\mathsf{w}_1^* = \arg\min_{\mathsf{w}_1} E(\mathsf{w}_1)$$

► Such automatic learning of parameters **w**^{*}₁ is called *machine learning*.

What is Deep Learning?

▶ We can use output of f₁ as input to another function f₂ with parameters w₂.

$$y = f_2(f_1(\mathbf{x}; \mathbf{w}_1); \mathbf{w}_2)$$

- Composition of both functions yields a more powerful function.
- Parameters w_1, w_2 can be evaluated as before

$$E(\mathbf{w}_1, \mathbf{w}_2) = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2 = \frac{1}{2} \sum_{n=1}^{N} (f_2(f_1(\mathbf{x}_n; \mathbf{w}_1); \mathbf{w}_2) - t_n)^2$$

Parameters can be learned as before

$$\mathbf{w}_1^*, \mathbf{w}_2^* = \arg\min_{\mathbf{w}_1, \mathbf{w}_2} E(\mathbf{w}_1, \mathbf{w}_2)$$

▶ Learning a sequence of such function f₁, f₂,..., f_L with parameters w₁, w₂,..., w_L is called *deep learning*.

Minimization

• Minima of a function $E(\theta)$ are characterized by the condition

$$\nabla_{\theta} E = \mathbf{0}$$

► To reach a (local) minimum, gradient descent can be used

$$\theta^{\tau+1} = \theta^{\tau} - \eta \, \nabla_{\theta} E|_{\theta^{\tau}}$$

- Modern deep learning frameworks provide
 - more sophisticated methods of reaching local minima (Adam, AdaGrad, etc.), and
 - automatic computation of gradient $\nabla_{\theta} E$.

Therefore, we will assume that gradient computation and error minimization is always available.

► Just need to implement the error function for your problem.

The Artificial Neuron

► An artificial neuron is a very simple *non-linear* function

$$f(\mathbf{x};\mathbf{w}) = h(\mathbf{w}^T\mathbf{x} + b)$$

where h is usually the ReLU function

$$h(a) = ReLU(a) = \begin{cases} a & a \ge 0\\ 0 & a < 0 \end{cases}$$

- A neuron can be viewed as a detector of its own weights.
- When $\mathbf{w}^T \mathbf{x}$ is high, neuron is more likely to *fire*.

Neural Networks

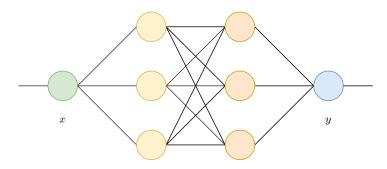


Figure: A simple 3 layer neural network mapping scalar input x to scalar output y. Author: N. Khan (2021)

Neural Networks

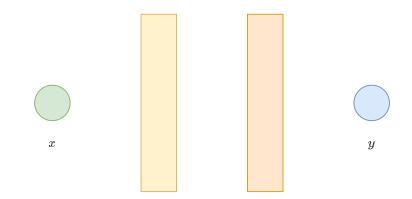


Figure: A simple 3 layer neural network with *hidden* neurons folded in space (viewed as vectors). Author: N. Khan (2021)

Neural Networks

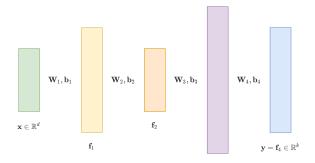


Figure: A general 3 layer neural network with vector inputs, vector hidden layers and vector outputs. Author: N. Khan (2021)

Loss Functions for Machine Learning

Notation:

- Let $x \in \mathbb{R}$ denote a *univariate* input.
- Let $\mathbf{x} \in \mathbb{R}^{D}$ denote a *multivariate* input.
- Same for targets $t \in \mathbb{R}$ and $\mathbf{t} \in \mathbb{R}^{K}$.
- Same for outputs $y \in \mathbb{R}$ and $\mathbf{y} \in \mathbb{R}^{K}$.
- Let θ denote the set of all learnable parameters of a machine learning model.

Loss Functions for Machine Learning Regression

Univariate

$$L(\theta) = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2$$

Multivariate

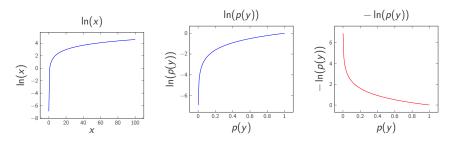
$$L(\theta) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{t}_n\|^2$$

- Known as half-sum-squared-error (SSE) or ℓ_2 -loss.
- Verify that both losses are 0 when outputs match targets for all n.
 Otherwise, both losses are greater than 0.

Background

Probability and Negative of Natural Logarithm

- ► Logarithm is a monotonically increasing function.
- Probability lies between 0 and 1.
- Between 0 and 1, logarithm is negative.
- So $-\ln(p(x))$ approaches ∞ for p(x) = 0 and 0 for p(x) = 1.
- Can be used as a loss function.



Loss Functions for Machine Learning Binary Classification

- ► For *two-class classification*, targets can be binary.
 - $t_n = 0$ if \mathbf{x}_n belongs to class C_0 .
 - $t_n = 1$ if \mathbf{x}_n belongs to class C_1 .
- ► If output y_n can be restricted to lie between 0 and 1, we can *treat* it as probability of x_n belonging to class C₁. That is, y_n = P(C₁|x_n).
- Then $1 y_n = P(\mathcal{C}_0 | \mathbf{x}_n)$.
- Ideally,
 - y_n should be 1 if $\mathbf{x}_n \in \mathcal{C}_1$, and
 - ▶ $1 y_n$ should be 1 if $\mathbf{x}_n \in C_0$.
- Equivalently,
 - ▶ $-\ln y_n$ should be 0 if $\mathbf{x}_n \in \mathcal{C}_1$, and
 - $-\ln(1-y_n)$ should be 0 if $\mathbf{x}_n \in \mathcal{C}_0$.

Loss Functions for Machine Learning Binary Classification

- ► So depending upon t_n , either $-\ln y_n$ or $-\ln(1-y_n)$ should be considered as loss.
- Using t_n to *pick* the relevant loss, we can write total loss as

$$L(\theta) = -\sum_{n=1}^{N} t_n \ln y_n + (1 - t_n) \ln(1 - y_n)$$

- ► Known as *binary cross-entropy (BCE) loss*.
- Verify that BCE loss is 0 when outputs match targets for all n. Otherwise, loss is greater than 0.

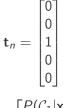
Loss Functions for Machine Learning Multiclass Classification

- For multiclass classification, targets can be represented using 1-of-K coding. Also known as 1-hot vectors.
 - 1-hot vector: only one component is 1. All the rest are 0.
 - If $t_{n3} = 1$, then \mathbf{x}_n belongs to class 3.
- ► If outputs of K neurons can be restricted to

1.
$$0 \le y_{nk} \le 1$$
, and
2. $\sum_{k=1}^{K} y_{nk} = 1$,

then we can *treat* outputs as probabilities.

 Later, we shall see activation functions that produce per-class probability values.



$$\mathbf{y}_{n} = \begin{bmatrix} P(\mathcal{C}_{1}|\mathbf{x}_{n}) \\ P(\mathcal{C}_{2}|\mathbf{x}_{n}) \\ P(\mathcal{C}_{3}|\mathbf{x}_{n}) \\ P(\mathcal{C}_{4}|\mathbf{x}_{n}) \\ P(\mathcal{C}_{5}|\mathbf{x}_{n}) \end{bmatrix}$$

Loss Functions for Machine Learning Multiclass Classification

Similar to BCE loss, we can use t_{nk} to pick the relevant negative log loss and write overall loss as

$$L(\theta) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln y_{nk}$$

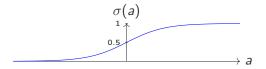
- ► Known as *multiclass cross-entropy (MCE) loss*.
- Verify that MCE loss is 0 when outputs match targets for all n. Otherwise, loss is greater than 0.

Activation Functions

- Recall that a perceptron has a non-differentiable activation function, i.e., step function.
 - > Zero-derivative everywhere except at 0 where it is non-differentiable.
- Prevents gradient descent.
- Can we use a smooth activation function that behaves similar to a step function?
- Perceptron with a smooth activation function is called a *neuron*.
- Neural networks are also called multilayer perceptrons (MLP) even though they do not contain any perceptron.

Logistic Sigmoid Function

- ▶ For $a \in \mathbb{R}$, the *logistic sigmoid* function is given by $\sigma(a) = \frac{1}{1+e^{-a}}$
- *Sigmoid* means S-shaped.
- Maps −∞ ≤ a ≤ ∞ to the range 0 ≤ σ ≤ 1. Also called squashing function.
- Can be treated as a probability value.

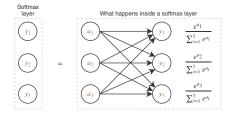


Activation Functions

Regression

- Univariate: use 1 output neuron with identity activation function y(a) = a.
- Multivariate: use K output neurons with identity activation functions $y(a_k) = a_k$.
- Classification
 - ▶ Binary: use 1 output neuron with logistic sigmoid $y(a) = \sigma(a)$.
 - ▶ Multiclass: use *K* output neurons with *softmax* activation function.

Softmax Activation Function



▶ For real numbers a_1, \ldots, a_K , the *softmax* function is given by

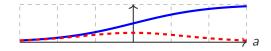
$$y(a_k; a_1, a_2, \dots, a_K) = \frac{e^{a_k}}{\sum_{i=1}^K e^{a_i}}$$

Output of k-th neuron depends on activations of all neurons in the same layer.

Softmax Activation Function

- Softmax is ≈ 1 when $a_k >> a_j \ \forall j \neq k$ and ≈ 0 otherwise.
- Provides a smooth (differentiable) approximation to finding the *index of* the maximum element.
 - Compute softmax for 1, 10, 100.
 - Does not work everytime.
 - Compute softmax for 1, 2, 3. Solution: multiply by 100.
 - Compute softmax for 1, 10, 1000. Solution: subtract maximum before computing softmax.
- ► Also called the *normalized exponential* function.
- ▶ Since $0 \le y_k \le 1$ and $\sum_{k=1}^{K} y_k = 1$, softmax outputs can be treated as probability values.

Logistic Sigmoid

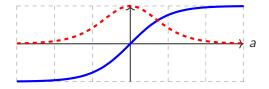


Activation function Derivative Maximum magnitude of derivative Problem

$$egin{aligned} y(a) &= rac{1}{1+e^{-a}} \ y'(a) &= y(a)(1-y(a)) \ rac{1}{4} \end{aligned}$$

Cause vanishing gradients

Hyperbolic Tangent



Activation function Derivative Maximum magnitude of derivative Problem

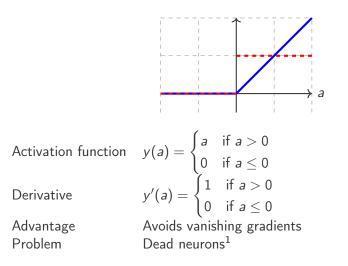
$$y(a) = tanh(a)$$

$$y'(a) = 1 - y^{2}(a)$$

1

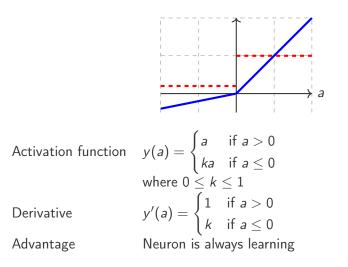
Cause vanishing gradients

Rectified Linear Unit (ReLU)

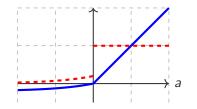


¹This can be an advantage as well since death implies fewer neurons.

Leaky ReLU



Exponential Linear Unit (ELU)



Activation function

 $y(a) = \begin{cases} a & \text{if } a > 0\\ k(e^a - 1) & \text{if } a \le 0 \end{cases}$ where k > 0 $y'(a) = \begin{cases} 1 & \text{if } a > 0\\ y(a) + k & \text{if } a \le 0 \end{cases}$

Derivative

Maximum magnitude of derivative Advantage

Neuron is mostly learning

Activation Functions Summary

Name	y(a)	Plot	y'(a)	Comments
Logistic sigmoid	$\frac{1}{1+e^{-a}}$		y(a)(1-y(a))	Vanishing gradients
Hyperbolic tangent	tanh(<i>a</i>)		$1 - y^{2}(a)$	Vanishing gradients
Rectified Linear Unit	$\begin{cases} a & \text{if } a > 0 \\ 0 & \text{if } a \le 0 \end{cases}$		∫1	Dead neurons.
(ReLU)	$\int 0$ if $a \le 0$) 0	Sparsity.
Leaky ReLU	$\begin{cases} a & \text{if } a > 0 \\ ka & \text{if } a \le 0 \end{cases}$		$\begin{cases} 1 \\ k \end{cases}$	0 < k < 1
	(Ka II a ≤ 0		(ĸ	
Exponential Linear Unit (ELU)	$egin{cases} a & ext{if } a > 0 \ k(e^a-1) & ext{if } a \leq 0 \end{cases}$		$\begin{cases} 1\\ y(a)+k \end{cases}$	k > 0.

- Saturated sigmoidal neurons stop learning. Piecewise-linear units keep learning by avoiding saturation.
- ELU has been shown to lead to better accuracy and faster training.
- Take home message: For hidden neurons, use a member of the LU family. They avoid i) saturation and ii) the vanishing gradient problem.

Regularization in Neural Networks

- A model that performs well on training data but poorly on test data is said to be *over-fitting*.
- Over-fitting can be lessened via *regularization* which can be understood as restricting the power of the model.
 - 1. Penalise magnitudes of weights: $\tilde{L}(\mathbf{w}) = L(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|^2$.
 - 2. *Dropout*: *During training*, a randomly selected subset of activations are set to zero within each layer.
 - **3.** *Early stopping* by checking *E*(**w**) on a validation set. Stop when error on validation set starts increasing.
 - 4. Training with *augmented*/transformed data.
 - 5. Batch Normalization.

Summary

- ► Deep learning can no longer be avoided by a CV practitioner.
- Very brief introduction to deep learning.
- Enough to get you started.
- Proper understanding can be obtained through a complete deep learning course.
- Overall idea: transform input x into another representation f(x) which is more useful for making decisions about x.