CS-570 Computer Vision

Nazar Khan

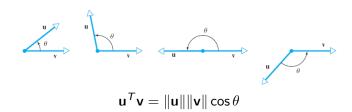
Department of Computer Science University of the Punjab

11. Convolutional Neural Networks

1 × 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Bloc

A Neuron as a Detector

- A neuron can be viewed as a detector.
- ▶ When it fires, the input must have been similar to its weights.
 - Firing $\implies \mathbf{w}^T \mathbf{x}$ was high $\implies \mathbf{w}$ was similar to \mathbf{x}
- ▶ So neuron firing indicates detection of something similar to its weights.



- ► Since $-1 \le \cos \theta \le 1$, $\mathbf{u}^T \mathbf{v}$ is highest when $\cos \theta = 1$
- ▶ That happens when $\theta = 0$
- ▶ That happens when vectors **u** and **v** point in the same direction.

Nazar Khan Computer Vision 2/36

CNN 1 x 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Convolutional Neural Networks

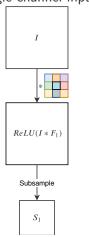
Now we will look at networks that produce neuronal output via convolution.

- Known as Convolutional Neural Networks (CNNs).
- Most frequently used network architecture.
- Exploits local correlation of inputs.

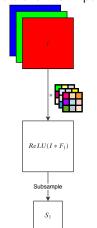
Nazar Khan Computer Vision 3/36

Building Blocks of CNNs Viewing convolution as neurons

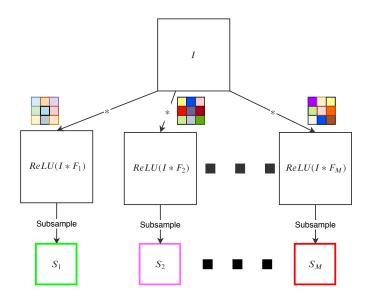
Single channel input



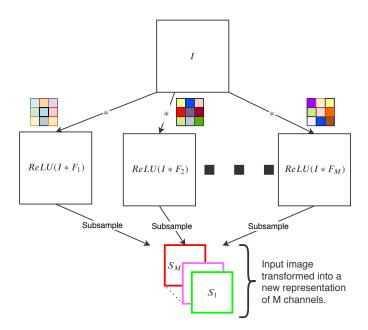
Multichannel input



Building blocks of CNNs

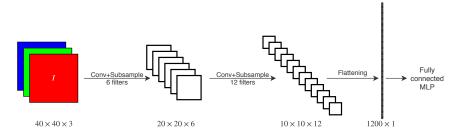


Building blocks of CNNs



CNN CNN

- Convolution by M filters produces M channels.
- ▶ They represent an M-channel transformation of the input image 1.
- ▶ This *M*-channel image can now be transformed further via additional convolution filters
- Convolution-subsampling block can be repeated multiple times.
- $I \to M_1$ channels $\to M_2$ channels $\to \cdots \to M_h$ channels \to flattening \to MI P.



Nazar Khan Computer Vision 7/36 CNN 1 x 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Convolutional layer

Consists of multiple arrays of neurons. Each such array is called a *slice* or more accurately *feature map*.

- Each neuron in a feature map
 - is connected to only few neurons in the previous layer, but
 - uses the same weight values as all other neurons in that feature map.
- So within a feature map, we have both
 - local receptive fields, and
 - shared weights.

Convolutional layer

CNN

- Example: A feature map may have
 - \blacktriangleright 100 neurons placed in a 10 \times 10 array, with
 - \blacktriangleright each neuron getting input from a 5 \times 5 patch of neurons in the previous layer (receptive field), and
 - the same $26(=5 \times 5 + 1)$ weights shared between these 100 neurons.
- ▶ Viewed as detectors, all 100 neurons detect the same 5 × 5 pattern but at different locations of the previous layer.
- ▶ Different feature maps will learn¹ to detect different kinds of patterns.
 - ► For example, one feature map might learn to detect horizontal edges while others might learn to detect vertical or diagonal edges and so on.

¹based on their learned weights

CNN 1 x 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Block

Convolutional layer

- ▶ To compute activations of the 100 neurons, a dot-product is computed between the same shared weights and different 5 × 5 patches of previous layer neurons.
- This is equivalent to sliding a window of weights over the previous layer and computing the dot-product at each location of the window.
- ► Therefore, activations of the feature map neurons are computed via *convolution* of the previous layer with a *kernel* comprising the shared weights. Hence the name of this layer.

Nazar Khan Computer Vision 10 / 36

CNN 1 x 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Block

Subsampling layer

► Reduces the spatial dimensions of the previous layer by downsampling. Also called *pooling* layer.

- Example: downsampling previous layer of $n \times n$ neurons by factor 2 yields a pooled layer of $\frac{n}{2} \times \frac{n}{2}$ neurons.
- ▶ No adjustable weights. Just a fixed downsampling procedure.
- Reduces computations in subsequent layers.
- ▶ Reduces number of weights in subsequent layers. This reduces overfitting.

Nazar Khan Computer Vision 11/36

Subsampling

CNN

- ▶ Options: From non-overlapping 2×2 patches
 - pick top-left (standard downsampling by factor 2)
 - pick average (mean-pooling)
 - pick maximum (max-pooling)
 - pick randomly (stochastic-pooling)
- Fractional max-pooling: pick pooling region randomly.

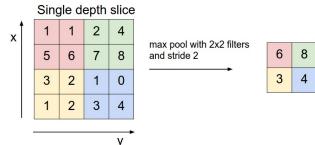


Figure: Max-pooling with 2 × 2 receptive fields, and stride of 2 neurons. Source: http://cs231n.github.io/convolutional-networks/

Nazar Khan Computer Vision 12/36

Subsampling

▶ The options in the last slide discard 75% of the data.

- They correspond to
 - \blacktriangleright neurons with 2 \times 2 receptive fields, and
 - stride of 2 neurons.
- ▶ This is the most commonly used configuration. Other options exist but note that pooling with larger receptive fields discards too much data.
- ▶ Subsampling layer can be skipped if convolution layers uses stride>1 since that also produces a subsampled output.

Nazar Khan Computer Vision 13 / 36

Subsampling

CNN

A pooling layer

- \triangleright with $F \times F$ receptive field and stride S,
- ▶ "looking at" a $W_1 \times H_1 \times D_1$ input volume,
- ightharpoonup produces a $W_2 \times H_2 \times D_2$ output volume, where
 - $W_2 = \frac{W_1 F}{S} + 1$
 - $H_2 = \frac{H_1 F}{c} + 1$
 - $D_2 = D_1$.

CNN 1 x 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Fully Connected Layers

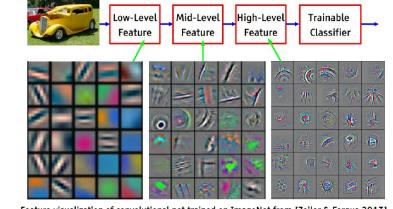
► After flattening, fully connected layers(s) can be used.

- ► The last layer has
 - neurons equal to the desired output size, and
 - activation functions based on the problem to be solved.
- ▶ The flattened layer can therefore be viewed as a transformation $\phi(x)$ that is fed into a sub-network of fully connected layers.
- ► Similarly, outputs of earlier layers are *intermediate representations* of the input.

Nazar Khan Computer Vision 15/36

CNN 1 × 1 Conv Denthwise Separable Conv Transposed Conv Unpooling FCN Residual Block

Intermediate Representations



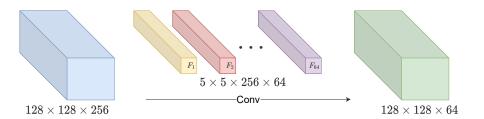
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Intermediate feature representations. Early layers form simple, low-level representations of the input. They are used to incrementally form more complex, high-level representations.

Source: http://cs231n.stanford.edu/slides/winter1516_lecture7.pdf

Nazar Khan Computer Vision 16 / 36

Cost of Convolution Layer

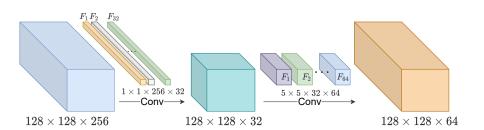


Cost = # multiplications =
$$\underbrace{(128 \times 128 \times 64)}_{\text{Output neurons}} \times \underbrace{(5 \times 5 \times 256)}_{\text{Cost per neuron}}$$

= 6710886400
= 6.7 billion

Nazar Khan Computer Vision 17/36

1×1 convolution



$$\begin{aligned} \mathsf{Cost} &= \underbrace{\left(\underbrace{128 \times 128 \times 32}\right)}_{\mathsf{Output\ neurons}} \times \underbrace{\left(1 \times 1 \times 256\right)}_{\mathsf{Cost\ per\ neuron}}\right) + \underbrace{\left(\underbrace{128 \times 128 \times 64}\right)}_{\mathsf{Output\ neurons}} \times \underbrace{\left(5 \times 5 \times 32\right)}_{\mathsf{Cost\ per\ neuron}}\right) \\ &= 134217728 + 838860800 \end{aligned}$$

= 973078528 = 0.97 billion

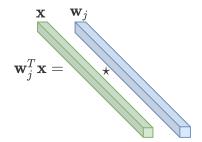
Almost 7 times reduction in number of multiplications to produce output volume of the same size.

Nazar Khan Computer Vision 18 / 36

1×1 convolution

ightharpoonup A 1 imes 1 convolution is just a linear combination of the input channels.

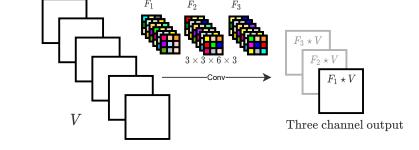
▶ The fully connected layer of a traditional MLP can also be represented via 1×1 convolutions.



Nazar Khan Computer Vision 19/36

Depthwise Separable Convolution What happens in standard convolution?

Consider the case of standard convolution using 3 filters.



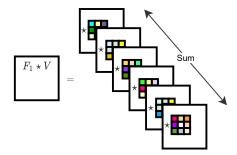
Number of weights to produce 3 channel output = $3 \times 3 \times 6 \times 3 = 162$.

Nazar Khan Computer Vision

Depthwise Separable Convolution

What happens in standard convolution?

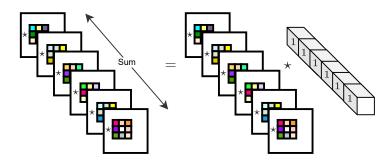
The first output channel is produced by 6 channel-wise convolutions that are then added together.



Nazar Khan Computer Vision 21 / 36

Depthwise Separable Convolution What happens in standard convolution?

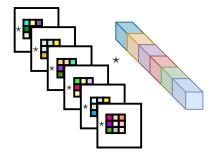
Summation of per-channel results corresponds to 1×1 convolution with a volume of 1s.



Nazar Khan Computer Vision 22 / 36

Depthwise Separable Convolution

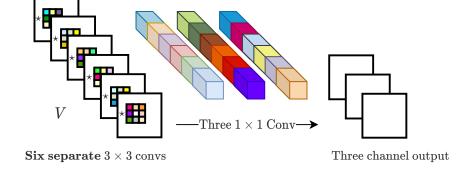
Replace sum by a linear combination. This is called a *depthwise separable* convolution.



Nazar Khan Computer Vision 23 / 36

Depthwise Separable Convolution

Multiple linear combinations lead to multiple output channels.

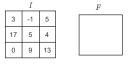


Number of weights to produce 3 channel output $= (3 \times 3 \times 6) + (6 \times 3) = 72$.

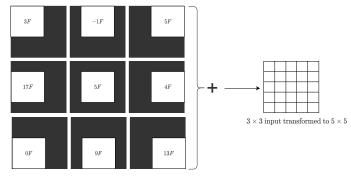
Expensive convolution (excluding the summation) is performed only once. Multiple channels are produced via cheap 1×1 convolution.

Nazar Khan Computer Vision 24 / 36

Transposed Convolution

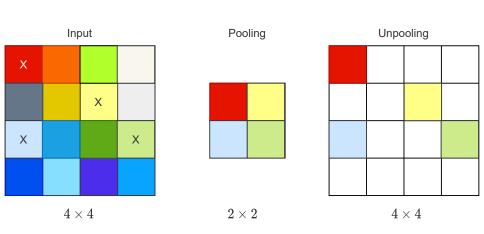


A *transposed convolution* superimposes copies of the filter F scaled by the values in input I. Can be used to increase size.



Nazar Khan Computer Vision 25 / 36

Unpooling



Reverses the size reduction effect of subsampling.

Nazar Khan Computer Vision 26 / 36

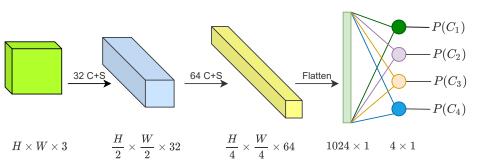
NN 1 x 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Fully Convolutional Networks (FCN)

- ► An architecture for semantic segmentation.
- Only locally connected layers: convolution, pooling and upsampling.
- No fully connected layers (fewer parameters, faster training).
- Input image can be of any size.

Nazar Khan Computer Vision 27/36

The problem with fully connected layers

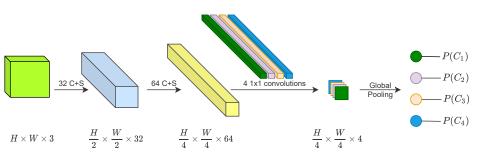


- ► K-class classification of an input image requires K softmax neurons at the output.
- ▶ 1024 neurons in fully connected layer imply that $H \times W$ must equal 256.
- So this can work with images of a certain size.

Nazar Khan Computer Vision 28 / 36

NN 1 × 1 Conv. Depthwise Senarable Conv. Transposed Conv. Unpooling FCN Residual Blocks

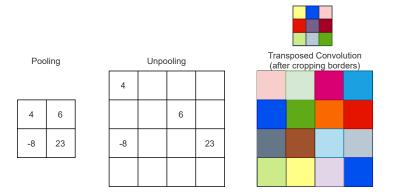
Fully Convolutional Networks



- ▶ K 1 × 1 convolutions corresponding to K classes.
- ▶ Followed by global pooling in each of the *K* channels.
- ► Followed by softmax.
- ► Can work with images of any size.

Nazar Khan Computer Vision 29 / 36

Image Generation via CNN



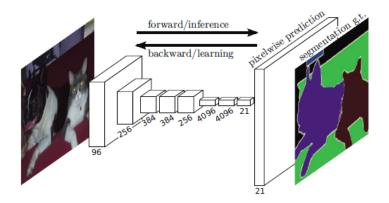
- ▶ Subsampled 2×2 result unpooled to a sparse 4×4 result that is then filled in via transposed convolution.
- ▶ Repeatedly upsample to obtain output of the same size as input.
- ► To generate images, use identity function at output.

► To generate pixel labels, use sigmoid or softmax.

Nazar Khan Computer Vision 30 / 36

INN 1 x 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

FCN for Semantic Segmentation²



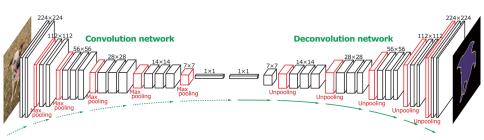
Each output pixel belongs to one of 21 classes.

Nazar Khan Computer Vision 31/36

²Segment image regions corresponding to different objects and find class of each object as well.

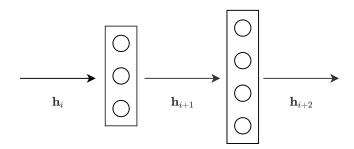
1 x 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Block

DeconvNet for Semantic Segmentation



Nazar Khan Computer Vision 32/36

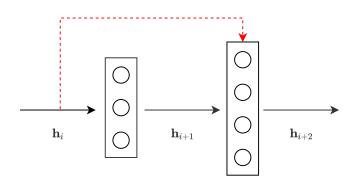
Residual Block



Standard propagation through two layers.

Nazar Khan Computer Vision 33/36

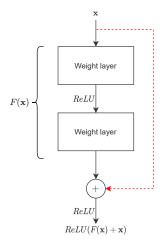
Residual Block



Skip connection between two layers.

Nazar Khan Computer Vision 34/36

Residual Block



If F(x) approaches zero for any reason (e.g. due to weight regularization), the original input x can still be carried through.

Nazar Khan Computer Vision 35 / 36

1 x 1 Conv Depthwise Separable Conv Transposed Conv Unpooling FCN Residual Blocks

Summary

- ► CNNs exploit local correlation of images.
- ▶ 1 × 1 convolutions reduce computations and can be used to control number of channels.
- Depthwise separable convolutions also reduce parameters and computations.
- Unpooling and transposed convolution can reverse the effects of subsampling to generate "images".
- ► Fully convolutional networks can operate on images of arbitrary size. No fully connected layers.
- Residual blocks avoid vanishing gradients.

Nazar Khan Computer Vision 36 / 36