CS-570 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab
13. Transformations I: Affine and Projective

Homogenous Coordinates

- Vectors that we use normally are in Cartesian coordinates and reside in Cartesian space \mathbb{R}^{d}.
- Appending a 1 as the last element of a Cartesian vector yields a vector in homogenous coordinates.

\mathbf{v}	\hat{v}
$\left[\begin{array}{l}x \\ y\end{array}\right]$	$\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

- A homogenous vector resides in the so-called projective space $\mathbb{P}^{d}=\mathbb{R}^{d+1} \backslash \mathbf{0}$.
- Projective space is just Cartesian space with an additional dimension but without an origin.
- Dimensionality of \mathbb{P}^{d} is $d+1$.

Projective Space

- \mathbb{R}^{d} to \mathbb{P}^{d} : Append by 1 .
- \mathbb{P}^{d} to \mathbb{R}^{d} : Divide by last element to make it 1 and then drop it.

$$
\hat{\mathbf{v}}=\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \longrightarrow \mathbf{v}=\left[\begin{array}{l}
x / w \\
y / w
\end{array}\right]
$$

- This means that in projective space, any vector \mathbf{v} and its scaled version kv will project down to the same Cartesian vector.
- That is, \mathbf{v} is projectively equivalent to $k \mathbf{v}$. Written as

$$
\begin{equation*}
\mathbf{v} \equiv k \mathbf{v} \tag{1}
\end{equation*}
$$

for $k \neq 0$.

Affine Transformation in \mathbb{P}^{2}

- Consider the following linear transformation from \mathbb{P}^{2} to \mathbb{P}^{2}

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & e \\
c & d & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Note that the last component will remain unchanged.
- Every affine transformation is invertible.
- Six degrees of freedom (DoF).
- An affine transformation matrix can perform 2D rotation, scaling, shear or translation.
- Any sequence of affine transformations is still affine (look at the last row).

Affine Transformation

Figure: Capabilities of an affine transformation matrix.

Affine Transformation

$$
\begin{gathered}
\text { Scaling } \\
{\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]} \\
x^{\prime}=s_{x} x \\
y^{\prime}=s_{y} y
\end{gathered}
$$

Translation
Rotation

$$
\left[\begin{array}{ccc}
1 & s h_{x} & 0 \\
s h_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
x^{\prime}=x+s h_{x} y
$$

$$
x^{\prime}=x+t_{x} \quad x^{\prime}=x \cos \theta-y \sin \theta
$$

$$
y^{\prime}=s_{y} y \quad y^{\prime}=y+s_{y} x
$$

$$
y^{\prime}=y+t_{y}
$$

$$
y^{\prime}=x \sin \theta+y \cos \theta
$$

Note that translation cannot be written in matrix-vector form in Cartesian space.

Rotation Matrix

Derivation

For counter-clockwise rotation of \mathbf{v} around origin by θ

$$
\begin{aligned}
x^{\prime} & =r \cos (\phi+\theta)=r \cos \phi \cos \theta-r \sin \phi \sin \theta \\
& =x \cos \theta-y \sin \theta \\
y^{\prime} & =r \sin (\phi+\theta)=r \cos \phi \sin \theta+r \sin \phi \cos \theta \\
& =x \sin \theta+y \cos \theta
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{l}
x^{\prime} \tag{2}\\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Rotation Matrix

Properties

- For any rotation matrix R

1. Each row is orthogonal to the other. Same for columns.
2. Each row has unit norm. Same for columns.

- Such matrices are called orthonormal matrices.

$$
\mathbf{R}^{T} \mathbf{R}=\mathbf{I}
$$

- They preserve length of the vector being transformed.

Rotation around an arbitrary point

Order matters!

Rotation/scaling/shear followed by translation

$$
\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & s h_{x} & 0 \\
s h_{y} & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & s h_{x} & t_{x} \\
s h_{y} & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

is not the same as translation followed by rotation/scaling/shear.

$$
\left[\begin{array}{ccc}
s_{x} & s h_{x} & 0 \\
s h_{y} & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & s h_{x} & s_{x} t_{x}+s h_{x} t_{y} \\
s h_{y} & s_{y} & s h_{y} t_{x}+s_{y} t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Projective Transformation

- Last row of affine transformation matrix is always $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$.
- If this condition is relaxed we obtain the so-called projective transformation.

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]
$$

- Also called homography or collineation since lines are mapped to lines.

Projective Transformation

- Linear in \mathbb{P}^{2} but non-linear in \mathbb{R}^{2} because 3rd coordinate of v^{\prime} is not guaranteed to be 1 .

$$
\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
h_{1} x+h_{2} y+h_{3} \\
h_{4} x+h_{5} y+h_{6} \\
h_{7} x+h_{8} y+h_{9}
\end{array}\right] \Longrightarrow \begin{aligned}
& x^{\prime}=\frac{h_{1} x+h_{2} y+h_{3}}{h_{7} x+h_{y} y+h_{9}} \\
& y^{\prime}=\frac{h_{4} x+h_{5} y+h_{6}}{h_{7} x+h_{8} y+h_{9}}
\end{aligned}
$$

- The 3rd coordinate is now a function of the inputs x and y and division involving them makes the transformation non-linear.

Projective Transformation

- Projective transformation has only 8 degrees of freedom.
- In projective space, $\mathbf{v} \equiv k(\mathbf{v})$ for all $k \neq 0$ because both correspond to the same point in Cartesian space. So

$$
k(\mathbf{v}) \equiv \mathbf{v} \Longrightarrow k(\mathbf{H} \mathbf{v}) \equiv \mathbf{H} \mathbf{v} \Longrightarrow k \mathbf{H} \mathbf{v} \equiv \mathbf{H} \mathbf{v} \Longrightarrow k \mathbf{H} \equiv \mathbf{H}
$$

- Let $\mathbf{H}^{\prime}=\frac{1}{h_{9}} \mathbf{H}$. Clearly, $h_{9}^{\prime}=1$ and therefore \mathbf{H}^{\prime} has 8 free parameters.
- But since $\mathbf{H}^{\prime} \equiv \mathbf{H}, \mathbf{H}$ must also have only 8 free parameters.

