CS-570 Computer Vision

Nazar Khan

Department of Computer Science University of the Punjab

13. Transformations I: Affine and Projective

Homogenous Coordinates

- ► Vectors that we use normally are in *Cartesian coordinates* and reside in Cartesian space ℝ^d.
- Appending a 1 as the last element of a Cartesian vector yields a vector in homogenous coordinates.

- A homogenous vector resides in the so-called *projective space* $\mathbb{P}^d = \mathbb{R}^{d+1} \setminus \mathbf{0}.$
 - Projective space is just Cartesian space with an additional dimension but without an origin.
 - Dimensionality of \mathbb{P}^d is d + 1.

Projective Space

- \mathbb{R}^d to \mathbb{P}^d : Append by 1.
- \mathbb{P}^d to \mathbb{R}^d : Divide by last element to make it 1 and then drop it.

$$\mathbf{\hat{v}} = \begin{bmatrix} x \\ y \\ w \end{bmatrix} \longrightarrow \mathbf{v} = \begin{bmatrix} x/w \\ y/w \end{bmatrix}$$

- This means that in projective space, any vector v and its scaled version kv will project down to the same Cartesian vector.
- That is, **v** is *projectively equivalent* to $k\mathbf{v}$. Written as

$$\mathbf{v} \equiv k\mathbf{v} \tag{1}$$

for $k \neq 0$.

Affine Transformation in \mathbb{P}^2

 \blacktriangleright Consider the following linear transformation from \mathbb{P}^2 to \mathbb{P}^2

$$\begin{bmatrix} x'\\ y'\\ 1 \end{bmatrix} = \begin{bmatrix} a & b & e\\ c & d & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ 1 \end{bmatrix}$$

- Note that the last component will remain unchanged.
- Every affine transformation is invertible.
- Six degrees of freedom (DoF).
- An affine transformation matrix can perform 2D rotation, scaling, shear or translation.
- Any sequence of affine transformations is still affine (look at the last row).

Affine Transformation

Figure: Capabilities of an affine transformation matrix.

Affine Transformation

Note that translation cannot be written in matrix-vector form in Cartesian space.

Rotation Matrix Derivation

For counter-clockwise rotation of ${\bf v}$ around origin by θ

$$x' = r \cos(\phi + \theta) = r \cos \phi \cos \theta - r \sin \phi \sin \theta$$
$$= x \cos \theta - y \sin \theta$$
$$y' = r \sin(\phi + \theta) = r \cos \phi \sin \theta + r \sin \phi \cos \theta$$
$$= x \sin \theta + y \cos \theta$$

Therefore

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

(2)

Nazar Khan

Rotation Matrix Properties

- ► For any rotation matrix **R**
 - 1. Each row is orthogonal to the other. Same for columns.
 - 2. Each row has unit norm. Same for columns.
- Such matrices are called *orthonormal* matrices.

$\mathsf{R}^{\mathcal{T}}\mathsf{R}=\mathsf{I}$

They preserve length of the vector being transformed.

Rotation around an arbitrary point

Order matters!

Rotation/scaling/shear followed by translation

$$egin{bmatrix} 1 & 0 & t_x \ 0 & 1 & t_y \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} s_x & sh_x & 0 \ sh_y & s_y & 0 \ 0 & 0 & 1 \end{bmatrix} = egin{bmatrix} s_x & sh_x & t_x \ sh_y & s_y & t_y \ 0 & 0 & 1 \end{bmatrix}$$

is not the same as translation followed by rotation/scaling/shear.

$$\begin{bmatrix} s_x & sh_x & 0\\ sh_y & s_y & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x\\ 0 & 1 & t_y\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} s_x & sh_x & s_xt_x + sh_xt_y\\ sh_y & s_y & sh_yt_x + s_yt_y\\ 0 & 0 & 1 \end{bmatrix}$$

Projective Transformation

- Last row of affine transformation matrix is always $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$.
- If this condition is relaxed we obtain the so-called *projective* transformation.

$$\mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

► Also called *homography* or *collineation* since lines are mapped to lines.

Projective Transformation

▶ Linear in \mathbb{P}^2 but non-linear in \mathbb{R}^2 because 3rd coordinate of \mathbf{v}' is not guaranteed to be 1.

$$\begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} h_1 x + h_2 y + h_3 \\ h_4 x + h_5 y + h_6 \\ h_7 x + h_8 y + h_9 \end{bmatrix} \implies \begin{aligned} x' &= \frac{h_1 x + h_2 y + h_3}{h_7 x + h_8 y + h_9} \\ y' &= \frac{h_4 x + h_5 y + h_6}{h_7 x + h_8 y + h_9} \end{aligned}$$

The 3rd coordinate is now a function of the inputs x and y and division involving them makes the transformation non-linear.

Projective Transformation *Degrees of Freedom*

- Projective transformation has only 8 degrees of freedom.
 - In projective space, v ≡ k(v) for all k ≠ 0 because both correspond to the same point in Cartesian space. So

$$k(\mathbf{v}) \equiv \mathbf{v} \implies k(\mathbf{H}\mathbf{v}) \equiv \mathbf{H}\mathbf{v} \implies k\mathbf{H}\mathbf{v} \equiv \mathbf{H}\mathbf{v} \implies k\mathbf{H} \equiv \mathbf{H}$$

- Let $\mathbf{H}' = \frac{1}{h_0} \mathbf{H}$. Clearly, $h'_9 = 1$ and therefore \mathbf{H}' has 8 free parameters.
- But since $\mathbf{H}' \equiv \mathbf{H}$, **H** must also have only 8 free parameters.