CS-570 Computer Vision

Nazar Khan

Department of Computer Science University of the Punjab

14. Transformations II: Estimation and Warping

Estimation of Affine Transform

► We are given *N* corresponding points

$$x_1 \Longleftrightarrow x'_1$$
 $x_2 \Longleftrightarrow x'_2$
 \vdots
 $x_N \Longleftrightarrow x'_N$

where $\mathbf{x}_i' = \mathbf{T}\mathbf{x}_i$ represents an affinely transformed point pair.

► Goal is to find the 6 parameters

$$\begin{bmatrix} a & b & e \\ c & d & f \\ 0 & 0 & 1 \end{bmatrix}$$

of the affine transformation T that maps the x_i s to x_i 's.

Nazar Khan Computer Vision 2/17

Estimation of Affine Transform

By writing the transformation parameters in vector form, the *i*th correspondence $\mathbf{x}'_i = \mathbf{T}\mathbf{x}_i$ can be written as

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_i & y_i & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ e \\ c \\ d \\ f \end{bmatrix} = \begin{bmatrix} x'_i \\ y'_i \end{bmatrix}$$

Nazar Khan Computer Vision 3/17

Estimation of Affine Transform

► All N correspondences can be written as

$$\underbrace{\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ & & \vdots & & & \\ x_N & y_N & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_N & y_N & 1 \end{bmatrix}}_{2N \times 6} \underbrace{\begin{bmatrix} a \\ b \\ e \\ c \\ d \\ f \end{bmatrix}}_{6 \times 1} = \underbrace{\begin{bmatrix} x_1' \\ y_1' \\ \vdots \\ x_N' \\ y_N' \end{bmatrix}}_{2N \times 1}$$

which can be seen as a linear system Av = b.

Can be solved via pseudoinverse

$$Av = b \implies A^TAv = A^Tb \implies v = (A^TA)^{-1}A^Tb = A^{\dagger}b$$

where $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ is the 6 × 2N matrix called the *pseudoinverse* of Α.

Nazar Khan Computer Vision 4/17

Estimation of Affine Transform Algorithm

Input: N point correspondences $x_i \iff x'_i$

- 1. Fill in the $2N \times 6$ matrix **A** using the x_i .
- 2. Fill in the $2N \times 1$ vector **b** using the \mathbf{x}'_{i} .
- 3. Compute $6 \times 2N$ pseudo-inverse $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$.
- 4. Compute optimal affine transformation parameters as $\mathbf{v}^* = \mathbf{A}^{\dagger} \mathbf{b}$.

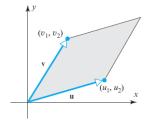
Nazar Khan Computer Vision 5/17

Detour – Cross Product

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix}}_{[\mathbf{u}]_{\times}} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

- Only defined for 3-dimensional space.
- Matrix [u] has two linearly independent rows.
 - ▶ *Proof*: $u_1 \text{ row} 1 + u_2 \text{ row} 2 + u_3 \text{ row} 3 = \mathbf{0}^T \implies \text{any row can be written as}$ a linear combination of the other two rows.
- \mathbf{v} $\mathbf{u} \times \mathbf{v}$ is another 3-dimensional vector orthogonal to both \mathbf{u} and \mathbf{v} .
- $\|\mathbf{u} \times \mathbf{v}\|$ represents the area of the parallelogram formed by \mathbf{u} and \mathbf{v} .

Detour - Cross Product



- ▶ If **u** and **v** point in the same direction, then no parallelogram will be formed.
- ▶ Therefore $\|\mathbf{u} \times \mathbf{v}\|$ will be 0.
- ► The only vector with norm 0 is the **0** vector.
- ▶ Therefore, $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ when \mathbf{u} and \mathbf{v} point in the same direction.

▶ We are given *N* corresponding points

$$x_1 \Longleftrightarrow x'_1$$

$$x_2 \Longleftrightarrow x'_2$$

$$\vdots$$

$$x_N \Longleftrightarrow x'_N$$

where $\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i$ represents a projectively transformed point pair.

- ▶ Goal is to find the 8 parameters $h_1, h_2 ..., h_8$ of the projective transformation \mathbf{H} that maps the \mathbf{x} points to the \mathbf{x}' points.
- ▶ Parameter h_9 can be fixed to be 1.
- ▶ The *i*th correspondence can be written as $\mathbf{x}_i' \equiv \mathbf{H}\mathbf{x}_i$ in projective space¹.

Nazar Khan

¹Notice that \mathbf{x}'_i can be a scaled version of $\mathbf{H}\mathbf{x}_i$.

- ► This implies that the 3-dimensional vectors x'_i and Hx_i point in the same direction.
- ► Their cross-product will be the zero vector.

$$\mathbf{x}_i' \times \mathbf{H} \mathbf{x}_i = \mathbf{0}$$

$$\begin{bmatrix} \mathbf{x}_i' \\ \mathbf{y}_i' \\ \mathbf{w}_i' \end{bmatrix} \times \begin{bmatrix} \mathbf{h}^{1T} \\ \mathbf{h}^{2T} \\ \mathbf{h}^{3T} \end{bmatrix} \mathbf{x}_i = \mathbf{0}$$

where \mathbf{h}^{jT} is the *j*-th row of \mathbf{H} .

Cross-product can be performed as

$$\begin{bmatrix} 0 & -w_i' & y_i' \\ w_i' & 0 & -x_i' \\ -y_i' & x_i' & 0 \end{bmatrix} \begin{bmatrix} \mathbf{h}^{1T} \mathbf{x}_i \\ \mathbf{h}^{2T} \mathbf{x}_i \\ \mathbf{h}^{3T} \mathbf{x}_i \end{bmatrix} = \mathbf{0}$$

Nazar Khan Computer Vision 9/17

► After matrix-vector multiplication

$$\begin{bmatrix} y_i' \mathbf{h}^{3T} \mathbf{x}_i - w_i' \mathbf{h}^{2T} \mathbf{x}_i \\ w_i' \mathbf{h}^{1T} \mathbf{x}_i - x_i' \mathbf{h}^{3T} \mathbf{x}_i \\ x_i' \mathbf{h}^{2T} \mathbf{x}_i - y_i' \mathbf{h}^{1T} \mathbf{x}_i \end{bmatrix} = \begin{bmatrix} y_i' \mathbf{x}_i^T \mathbf{h}^3 - w_i' \mathbf{x}_i^T \mathbf{h}^2 \\ w_i' \mathbf{x}_i^T \mathbf{h}^1 - x_i' \mathbf{x}_i^T \mathbf{h}^3 \\ x_i' \mathbf{x}_i^T \mathbf{h}^2 - y_i' \mathbf{x}_i^T \mathbf{h}^1 \end{bmatrix} = \mathbf{0}$$

After separating the unknowns

$$\begin{bmatrix} \mathbf{0}^T & -w_i'\mathbf{x}_i^T & y_i'\mathbf{x}_i^T \\ w_i'\mathbf{x}_i^T & \mathbf{0}^T & -x_i'\mathbf{x}_i^T \\ -y_i'\mathbf{x}_i^T & x_i'\mathbf{x}_i^T & \mathbf{0}^T \end{bmatrix}_{3\times 9} \begin{bmatrix} \mathbf{h}^1 \\ \mathbf{h}^2 \\ \mathbf{h}^3 \end{bmatrix}_{9\times 1} = \mathbf{A}_i\mathbf{h} = \mathbf{0}$$

- ▶ Matrix **A**; has only 2 linearly independent rows.
- So one row can be discarded. Let's denote the resulting 2×9 matrix by \mathbf{A}_i as well.

Nazar Khan Computer Vision 10/17

- ▶ So one correspondence $x_i \iff x'_i$ yields 2 equations.
- Since 8 unknowns require atleast 8 equations, we will need $N \ge 4$ corresponding point pairs.

The points x_1,\ldots,x_N must be non-collinear. Similarly, x_1',\ldots,x_N' must also be non-collinear.

Nazar Khan Computer Vision 11/17

- ▶ This will yield the homogenous system Ah = 0 where size of A is $2N \times 9$.
- It can be shown that $rank(\mathbf{A}) = 8$ and $dim(\mathbf{A}) = 9$.
- ▶ So nullity of **A** is 1 and therefore **h** can be found as the null space of **A**.
- ▶ However, when measurements contain noise (which is always the case with pixel locations) or N > 4, then no **h** will exist that satisfies $\mathbf{Ah} = \mathbf{0}$ exactly.
- ▶ In such cases, the best one can do is to find an h that makes Ah as close to 0 as possible. This can be achieved via

$$\mathbf{h}^* = \arg\min_{\mathbf{h}} \|\mathbf{A}\mathbf{h}\|^2 \text{ s.t. } \|\mathbf{h}\|^2 = 1$$

▶ This can be done via singular value decomposition.

$$[U, D, V] = svd(A)$$

and h is the last column of the matrix V.

Nazar Khan Computer Vision 12 / 17

Estimation of Projective Transform *Algorithm*

Input: N point correspondences $x_i \iff x_i'$

- 1. Fill in the $2N \times 9$ matrix **A** using the \mathbf{x}_i and \mathbf{x}'_i .
- **2.** Compute $[\mathbf{U}, \mathbf{D}, \mathbf{V}] = \operatorname{svd}(\mathbf{A})$.
- Optimal projective transformation parameters h* are the last column of matrix V.

This algorithm is known as the *Direct Linear Transform (DLT)*.²

 $^{^2}$ For some practical tips, please refer to slides 14-17 from http://www.ele.puc-rio.br/~visao/Homographies.pdf

Image Warping

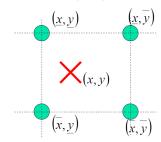
Original Affine Projective

Image Warping

- ▶ Inputs: Image / and transformation matrix **H**.
- Output: Transformed image I' = HI.
- Obvious approach:
 - For each pixel **x** in image *I*
 - Find transformed point $\mathbf{x}' = \mathbf{H}\mathbf{x}$
 - Divide by 3rd coordinate and move to Cartesian space
 - ► Copy the pixel color as I'(x') = I(x).
- ▶ Problem: Can leave holes in I'. Why?
- Solution:
 - ▶ For each pixel x' in image I'
 - Find transformed point $\mathbf{x} = \mathbf{H}^{-1}\mathbf{x}'$
 - Divide by 3rd coordinate and move to Cartesian space
 - ▶ Copy the pixel color as $I'(\mathbf{x}') = I(\mathbf{x})$.
- ▶ Problem: Transformed point x is not necessarily integer valued.

Image Warping Bilinear Interpolation

Find 4 nearest pixel locations around (x, y)

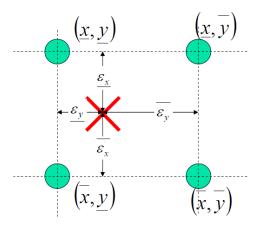


where

$$egin{aligned} & \underline{x} = \lfloor x
floor \ & \underline{y} = \lfloor y
floor \ & ar{x} = \lfloor x
floor + 1 \ & ar{y} = |y| + 1 \end{aligned}$$

Image Warping

Image Warping Bilinear Interpolation



$$I'(x',y') = \bar{\epsilon_x}\bar{\epsilon_y}I(\underline{x},\underline{y}) + \underline{\epsilon_x}\bar{\epsilon_y}I(\bar{x},\underline{y}) + \bar{\epsilon_x}\epsilon_yI(\underline{x},\bar{y}) + \underline{\epsilon_x}\epsilon_yI(\bar{x},\bar{y})$$

Nazar Khan Computer Vision 17/17