
CS-570 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab

9. Hough Transform



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

The Hough Transform

I A powerful method for detecting curves from boundary information.
I Exploits the duality between points on a curve and parameters of the

curve.
I Can detect analytic as well as non-analytic curves.

Nazar Khan Computer Vision 2 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Analytic representation of a line

I In the analytic representation of a line y = mx + c , every choice of
parameters (m, c) represents a different line.

I This is known as the slope-intercept parameter space.
I Weakness: vertical lines have m =∞.

x

y
y = x

y = x − 1

y = −x + 1

Nazar Khan Computer Vision 3 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Polar representation of a line

I Solution: Polar representation (r , θ) where
I r = perpendicular distance of line from origin
I θ = angle of vector orthogonal to the line

I Every (r , θ) pair represents a 2D line.

x

y

y = mx + c

r
θ

α

c

y = mx + c

m = tan(α) = tan(θ +
π

2
)

=
sin(θ + π

2 )

cos(θ + π
2 )

=
cos(θ)

− sin(θ)

c =
r

sin(θ)

y = −cos(θ)

sin(θ)
x +

r

sin(θ)

r = x cos(θ) + y sin(θ)

Nazar Khan Computer Vision 4 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Hough Transform for Line Detection

I An algorithm for finding lines given some edge points.
I Given point (x , y), line passing through it with angle θ must have

perpendicular r = x cos(θ) + y sin(θ).
I Given any edge pixel (x , y), potentially 180 lines could pass through it

assuming angular resolution of 1◦.
I Looping through the angles gives (r , θ) pairs for all lines through (x , y).
I So pixel (x , y) should vote for all those lines.

Figure: Lines passing through a point. Left: Angular resolution of 30◦. Right:
Angular resolution of 10◦. Author: N. Khan (2021)

Nazar Khan Computer Vision 5 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Hough Transform for Line Detection

r

θ
0◦ 1◦ 2◦ 3◦ · · · 179◦ Value
0 1 2 3 · · · 179 Index

Va
lue

−rmax

.

.

.

rmax

In
de

x

0

1

2
.
.
.

Figure: The accumulator array used to gather votes for each line. Each (r , θ) pair
needs to be quantized into bin-indices before casting a vote. Author: N. Khan (2021).

Nazar Khan Computer Vision 6 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Hough Transform for Line Detection

I By repeating this process for all edge pixels, actual lines will get a high
number of votes.

Figure: Each point votes for every line that passes through it. Genuine lines will
get more votes. Author: N. Khan (2021)

Nazar Khan Computer Vision 7 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Hough Transform for Line Detection
Pseudocode

initialize 2D (vote) accumulator array A to all zeros.
for every edge point (x , y)

for θ = 0 to π
compute r = x cos(θ) + y sin(θ)
compute indices (rind, θind) corresponding to (r , θ)
increment A(rind, θind) by 1 ←− vote of point (x , y) for line (r , θ)

valid lines are where A > threshold

Nazar Khan Computer Vision 8 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Hough Transform for Line Detection
Detailed Pseudocode

1. θrange = 180◦

2. θbinsize = 1◦ (for example)
3. θsize =

⌈
θrange
θbinsize

⌉
4. rmax = length of image diagonal
5. rrange = 2rmax
6. rbinsize = 1 pixel (for example)
7. rsize =

⌈
rrange
rbinsize

⌉
8. initialize 2D (vote) accumulator array A of size (rsize, θsize) to all zeros.
9. for every edge point (x , y)
10. for θ = 0 to θrange
11. compute r = x cos(θ) + y sin(θ)

12. rind = round
(

r+rmax
rbinsize

)
13. θind = round

(
θ mod 180
θbinsize

)
14. increment A(rind, θind) by 1 ←− vote of point (x , y) for line (r , θ)

Nazar Khan Computer Vision 9 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Hough Transform for Line Detection
Detailed Pseudocode

15. smooth votes via Gaussian convolution with kernel Gσh
to account for

uncertainties in the gradient direction
16. perform non-maxima suppression in k × k neighborhoods to remove fake lines
around real ones
17. valid lines1 are where A > τ which can be computed as a percentile

1Step 17 will yield indices of A. They will need to be converted back into (r , θ) values.
Nazar Khan Computer Vision 10 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Improvement

I After edge detection, we already know the gradient direction at (x , y).
I So there is no need to iterate over all possible θ.
I Use the correct θ from the gradient direction.
I This removes the loop at step 10.
I Pixel (x , y) only votes for the line that was actually passing through it.

I This speeds-up the algorithm.
I This also avoids ghost lines.

Nazar Khan Computer Vision 11 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Results

Original Using edge pixels only Using edge pixels and

τ = 95-th percentile gradient orientations

τ = 70-th percentile

Figure: Line detection via Hough transform. Canny parameters: σe = 1, th = 80-th
percentile, tl = 40-th percentile. Hough parameters: σh = σe

5 , k = 3. Author: N.
Khan (2021)

Nazar Khan Computer Vision 12 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Results

Original Using edge pixels only Using edge pixels and

τ = 95-th percentile gradient orientations

τ = 70-th percentile

Figure: Line detection via Hough transform. Canny parameters: σe = 1, th = 80-th
percentile, tl = 40-th percentile. Hough parameters: σh = σe

5 , k = 3. Author: N.
Khan (2021)

Nazar Khan Computer Vision 13 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Results

Original Using edge pixels only Using edge pixels and

τ = 95-th percentile gradient orientations

τ = 90-th percentile

Figure: Line detection via Hough transform. Canny parameters: σe = 1, th = 80-th
percentile, tl = 40-th percentile. Hough parameters: σh = σe

5 , k = 3. Author: N.
Khan (2021)

Nazar Khan Computer Vision 14 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Hough Transform for Circle Detection

I Analytic representation of circle of radius r centered at (a, b) is
(x − a)2 + (y − b)2 − r2 = 0.

I Hough space has 3 parameters (a, b, r).

Pseudocode
For every boundary point (x , y)

For every (a, b) in image plane
Compute r(a, b) =

√
(x − a)2 + (y − b)2

Compute aind, bind and rind
Increment A(aind, bind, rind) by 1

NMS(A ∗ Gσh
)> τ represents valid circles.

Nazar Khan Computer Vision 15 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Hough Transform for Circle Detection

I If we know the gradient vector ∇I (x , y) at point (x , y), then we also
know that the center (a, b) can only lie along this line.

I Hough space still has 3 parameters (a, b, r) but we search for r over a 1D
space instead of a 2D plane.

Pseudocode
For every boundary point (x , y)

For every (a, b) along gradient vector ∇I (x , y)
Compute r(a, b) =

√
(x − a)2 + (y − b)2

Compute aind, bind and rind
Increment A(aind, bind, rind) by 1

NMS(A ∗ Gσh
)> τ represents valid circles.

Nazar Khan Computer Vision 16 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Concluding Points

I Hough space becomes very large (param1× param2× · · · × paramN) when
number of parameters N is increased.

I Using orientation information ∇I (x , y) in addition to positional
information (x , y) leads to a smaller search space.

I Speed-up
I Fewer mistakes

Nazar Khan Computer Vision 17 / 17


	Cartesian vs. Polar Lines
	HT for Line Detection
	HT for Circle Detection

