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9. Hough Transform



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

The Hough Transform

I A powerful method for detecting curves from boundary information.
I Exploits the duality between points on a curve and parameters of the

curve.
I Can detect analytic as well as non-analytic curves.
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Analytic representation of a line

I In the analytic representation of a line y = mx + c , every choice of
parameters (m, c) represents a different line.

I This is known as the slope-intercept parameter space.
I Weakness: vertical lines have m =∞.

x

y
y = x

y = x − 1

y = −x + 1

Nazar Khan Computer Vision 3 / 17



Cartesian vs. Polar Lines HT for Line Detection HT for Circle Detection

Polar representation of a line

I Solution: Polar representation (r , θ) where
I r = perpendicular distance of line from origin
I θ = angle of vector orthogonal to the line

I Every (r , θ) pair represents a 2D line.
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Hough Transform for Line Detection

I An algorithm for finding lines given some edge points.
I Given point (x , y), line passing through it with angle θ must have

perpendicular r = x cos(θ) + y sin(θ).
I Given any edge pixel (x , y), potentially 180 lines could pass through it

assuming angular resolution of 1◦.
I Looping through the angles gives (r , θ) pairs for all lines through (x , y).
I So pixel (x , y) should vote for all those lines.

Figure: Lines passing through a point. Left: Angular resolution of 30◦. Right:
Angular resolution of 10◦. Author: N. Khan (2021)
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Hough Transform for Line Detection
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Figure: The accumulator array used to gather votes for each line. Each (r , θ) pair
needs to be quantized into bin-indices before casting a vote. Author: N. Khan (2021).
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Hough Transform for Line Detection

I By repeating this process for all edge pixels, actual lines will get a high
number of votes.

Figure: Each point votes for every line that passes through it. Genuine lines will
get more votes. Author: N. Khan (2021)
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Hough Transform for Line Detection
Pseudocode

initialize 2D (vote) accumulator array A to all zeros.
for every edge point (x , y)

for θ = 0 to π
compute r = x cos(θ) + y sin(θ)
compute indices (rind, θind) corresponding to (r , θ)
increment A(rind, θind) by 1 ←− vote of point (x , y) for line (r , θ)

valid lines are where A > threshold
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Hough Transform for Line Detection
Detailed Pseudocode

1. θrange = 180◦

2. θbinsize = 1◦ (for example)
3. θsize =

⌈
θrange
θbinsize

⌉
4. rmax = length of image diagonal
5. rrange = 2rmax
6. rbinsize = 1 pixel (for example)
7. rsize =

⌈
rrange
rbinsize

⌉
8. initialize 2D (vote) accumulator array A of size (rsize, θsize) to all zeros.
9. for every edge point (x , y)
10. for θ = 0 to θrange
11. compute r = x cos(θ) + y sin(θ)

12. rind = round
(

r+rmax
rbinsize

)
13. θind = round

(
θ mod 180
θbinsize

)
14. increment A(rind, θind) by 1 ←− vote of point (x , y) for line (r , θ)
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Hough Transform for Line Detection
Detailed Pseudocode

15. smooth votes via Gaussian convolution with kernel Gσh
to account for

uncertainties in the gradient direction
16. perform non-maxima suppression in k × k neighborhoods to remove fake lines
around real ones
17. valid lines1 are where A > τ which can be computed as a percentile

1Step 17 will yield indices of A. They will need to be converted back into (r , θ) values.
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Improvement

I After edge detection, we already know the gradient direction at (x , y).
I So there is no need to iterate over all possible θ.
I Use the correct θ from the gradient direction.
I This removes the loop at step 10.
I Pixel (x , y) only votes for the line that was actually passing through it.

I This speeds-up the algorithm.
I This also avoids ghost lines.
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Results

Original Using edge pixels only Using edge pixels and

τ = 95-th percentile gradient orientations

τ = 70-th percentile

Figure: Line detection via Hough transform. Canny parameters: σe = 1, th = 80-th
percentile, tl = 40-th percentile. Hough parameters: σh = σe

5 , k = 3. Author: N.
Khan (2021)
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Results

Original Using edge pixels only Using edge pixels and

τ = 95-th percentile gradient orientations

τ = 90-th percentile

Figure: Line detection via Hough transform. Canny parameters: σe = 1, th = 80-th
percentile, tl = 40-th percentile. Hough parameters: σh = σe

5 , k = 3. Author: N.
Khan (2021)
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Hough Transform for Circle Detection

I Analytic representation of circle of radius r centered at (a, b) is
(x − a)2 + (y − b)2 − r2 = 0.

I Hough space has 3 parameters (a, b, r).

Pseudocode
For every boundary point (x , y)

For every (a, b) in image plane
Compute r(a, b) =

√
(x − a)2 + (y − b)2

Compute aind, bind and rind
Increment A(aind, bind, rind) by 1

NMS(A ∗ Gσh
)> τ represents valid circles.
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Hough Transform for Circle Detection

I If we know the gradient vector ∇I (x , y) at point (x , y), then we also
know that the center (a, b) can only lie along this line.

I Hough space still has 3 parameters (a, b, r) but we search for r over a 1D
space instead of a 2D plane.

Pseudocode
For every boundary point (x , y)

For every (a, b) along gradient vector ∇I (x , y)
Compute r(a, b) =

√
(x − a)2 + (y − b)2

Compute aind, bind and rind
Increment A(aind, bind, rind) by 1

NMS(A ∗ Gσh
)> τ represents valid circles.
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Concluding Points

I Hough space becomes very large (param1× param2× · · · × paramN) when
number of parameters N is increased.

I Using orientation information ∇I (x , y) in addition to positional
information (x , y) leads to a smaller search space.

I Speed-up
I Fewer mistakes
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