CS-570 Computer Vision

Nazar Khan

Department of Computer Science
University of the Punjab
9. Hough Transform

The Hough Transform

- A powerful method for detecting curves from boundary information.
- Exploits the duality between points on a curve and parameters of the curve.
- Can detect analytic as well as non-analytic curves.

Analytic representation of a line

- In the analytic representation of a line $y=m x+c$, every choice of parameters (m, c) represents a different line.
- This is known as the slope-intercept parameter space.
- Weakness: vertical lines have $m=\infty$.

Polar representation of a line

- Solution: Polar representation (r, θ) where
- $r=$ perpendicular distance of line from origin
- $\theta=$ angle of vector orthogonal to the line
- Every (r, θ) pair represents a 2D line.

$$
\begin{aligned}
y & =m x+c \\
m & =\tan (\alpha)=\tan \left(\theta+\frac{\pi}{2}\right) \\
& =\frac{\sin \left(\theta+\frac{\pi}{2}\right)}{\cos \left(\theta+\frac{\pi}{2}\right)}=\frac{\cos (\theta)}{-\sin (\theta)} \\
c & =\frac{r}{\sin (\theta)} \\
y & =-\frac{\cos (\theta)}{\sin (\theta)} x+\frac{r}{\sin (\theta)} \\
r & =x \cos (\theta)+y \sin (\theta)
\end{aligned}
$$

Hough Transform for Line Detection

- An algorithm for finding lines given some edge points.
- Given point (x, y), line passing through it with angle θ must have perpendicular $r=x \cos (\theta)+y \sin (\theta)$.
- Given any edge pixel (x, y), potentially 180 lines could pass through it assuming angular resolution of 1°.
- Looping through the angles gives (r, θ) pairs for all lines through (x, y).
- So pixel (x, y) should vote for all those lines.

Figure: Lines passing through a point. Left: Angular resolution of 30°. Right: Angular resolution of 10°. Author: N. Khan (2021)

Hough Transform for Line Detection

Figure: The accumulator array used to gather votes for each line. Each (r, θ) pair needs to be quantized into bin-indices before casting a vote. Author: N. Khan (2021).

Hough Transform for Line Detection

- By repeating this process for all edge pixels, actual lines will get a high number of votes.

Figure: Each point votes for every line that passes through it. Genuine lines will get more votes. Author: N. Khan (2021)

Hough Transform for Line Detection

Pseudocode
initialize 2D (vote) accumulator array A to all zeros.
for every edge point (x, y)
for $\theta=0$ to π
compute $r=x \cos (\theta)+y \sin (\theta)$
compute indices ($r_{\text {ind }}, \theta_{\text {ind }}$) corresponding to (r, θ)
increment $A\left(r_{\text {ind }}, \theta_{\text {ind }}\right)$ by $1 \longleftarrow$ vote of point (x, y) for line (r, θ)
valid lines are where $A>$ threshold

Hough Transform for Line Detection

1. $\theta_{\text {range }}=180^{\circ}$
2. $\theta_{\text {binsize }}=1^{\circ}$ (for example)
3. $\theta_{\text {size }}=\left\lceil\frac{\theta_{\text {range }}}{\theta_{\text {bingize }}}\right\rceil$
4. $r_{\text {max }}=$ length of image diagonal
5. $r_{\text {range }}=2 r_{\text {max }}$
6. $r_{\text {binsize }}=1$ pixel (for example)
7. $r_{\text {size }}=\left\lceil\frac{r_{\text {range }}}{r_{\text {binsize }}}\right\rceil$
8. initialize 2D (vote) accumulator array A of size $\left(r_{\text {size }}, \theta_{\text {size }}\right)$ to all zeros.
9. for every edge point (x, y)
10. for $\theta=0$ to $\theta_{\text {range }}$
11.
12.
13.
14.

compute $r=x \cos (\theta)+y \sin (\theta)$
$r_{\text {ind }}=$ round $\left(\frac{r+r_{\text {max }}}{r_{\text {binsize }}}\right)$
$\theta_{\text {ind }}=\operatorname{round}\left(\frac{\theta \text { mod } 180}{\theta_{\text {binsize }}}\right)$
increment $A\left(r_{\text {ind }}, \theta_{\text {ind }}\right)$ by $1 \longleftarrow$ vote of point (x, y) for line (r, θ)

Hough Transform for Line Detection

15. smooth votes via Gaussian convolution with kernel $G_{\sigma_{h}}$ to account for uncertainties in the gradient direction
16. perform non-maxima suppression in $k \times k$ neighborhoods to remove fake lines around real ones
17. valid lines ${ }^{1}$ are where $A>\tau$ which can be computed as a percentile
${ }^{1}$ Step 17 will yield indices of A. They will need to be converted back into (r, θ) values.

Improvement

- After edge detection, we already know the gradient direction at (x, y).
- So there is no need to iterate over all possible θ.
- Use the correct θ from the gradient direction.
- This removes the loop at step 10.
- Pixel (x, y) only votes for the line that was actually passing through it.
- This speeds-up the algorithm.
- This also avoids ghost lines.

Results

Original

Using edge pixels only
$\tau=95-$ th percentile

Using edge pixels and gradient orientations $\tau=70$-th percentile

Figure: Line detection via Hough transform. Canny parameters: $\sigma_{e}=1, t_{h}=80-$ th percentile, $t_{l}=40$-th percentile. Hough parameters: $\sigma_{h}=\frac{\sigma_{e}}{5}, k=3$. Author: N. Khan (2021)

Results

Original

Using edge pixels only
$\tau=95-$ th percentile

Using edge pixels and gradient orientations $\tau=70$-th percentile

Figure: Line detection via Hough transform. Canny parameters: $\sigma_{e}=1, t_{h}=80$-th percentile, $t_{l}=40$-th percentile. Hough parameters: $\sigma_{h}=\frac{\sigma_{e}}{5}, k=3$. Author: N. Khan (2021)

Results

Original

Using edge pixels only
$\tau=95$-th percentile

Using edge pixels and gradient orientations

Figure: Line detection via Hough transform. Canny parameters: $\sigma_{e}=1, t_{h}=80$-th percentile, $t_{l}=40$-th percentile. Hough parameters: $\sigma_{h}=\frac{\sigma_{e}}{5}, k=3$. Author: N. Khan (2021)

Hough Transform for Circle Detection

- Analytic representation of circle of radius r centered at (a, b) is $(x-a)^{2}+(y-b)^{2}-r^{2}=0$.
- Hough space has 3 parameters (a, b, r).

Pseudocode

For every boundary point (x, y)
For every (a, b) in image plane
Compute $r(a, b)=\sqrt{(x-a)^{2}+(y-b)^{2}}$
Compute $a_{\text {ind }}, b_{\text {ind }}$ and $r_{\text {ind }}$
Increment $A\left(a_{\text {ind }}, b_{\text {ind }}, r_{\text {ind }}\right)$ by 1
$\mathrm{NMS}\left(A * G_{\sigma_{h}}\right)>\tau$ represents valid circles.

Hough Transform for Circle Detection

- If we know the gradient vector $\nabla I(x, y)$ at point (x, y), then we also know that the center (a, b) can only lie along this line.
- Hough space still has 3 parameters (a, b, r) but we search for r over a 1D space instead of a 2D plane.

Pseudocode

For every boundary point (x, y)
For every (a, b) along gradient vector $\nabla I(x, y)$ Compute $r(a, b)=\sqrt{(x-a)^{2}+(y-b)^{2}}$
Compute $a_{\text {ind }}, b_{\text {ind }}$ and $r_{\text {ind }}$ Increment $A\left(a_{\text {ind }}, b_{\text {ind }}, r_{\text {ind }}\right)$ by 1
$\mathrm{NMS}\left(A * G_{\sigma_{h}}\right)>\tau$ represents valid circles.

Concluding Points

- Hough space becomes very large (param $_{1} \times$ param $_{2} \times \cdots \times$ param $_{N}$) when number of parameters N is increased.
- Using orientation information $\nabla I(x, y)$ in addition to positional information (x, y) leads to a smaller search space.
- Speed-up
- Fewer mistakes

