Name: \qquad Roll Number: \qquad

1. (5 points) Show that the 3×9 system matrix \mathbf{A}_{i} below has only 2 linearly independent rows.

$$
\left[\begin{array}{ccc}
\mathbf{0}^{T} & -w_{i}^{\prime} \mathbf{x}_{i}^{T} & y_{i}^{\prime} \mathbf{x}_{i}^{T} \\
w_{i}^{\prime} \mathbf{x}_{i}^{T} & \mathbf{0}^{T} & -x_{i}^{\prime} \mathbf{x}_{i}^{T} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{T} & x_{i}^{\prime} \mathbf{x}_{i}^{T} & \mathbf{0}^{T}
\end{array}\right]_{3 \times 9}\left[\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right]_{9 \times 1}=\mathbf{A}_{i} \mathbf{h}=\mathbf{0}
$$

2. (1 point) Which of the following can be the last row of an affine transformation matrix in \mathbb{P}^{2} ?
A. $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
B. $\left[\begin{array}{lll}0 & 0 & 3\end{array}\right]$
C. $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$
D. $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$
3. (4 points) Write down the sequence of matrix multiplications (in the correct order) that will
4. first scale the 2 D point (x, y) by 3 in the x -direction and 5 in the y -direction,
5. then rotate the result by 45° counter-clockwise,
6. then translate the result by -3 in the x -direction and 7 in the y -direction,
7. and finally rotate by 30° clockwise.

You are only allowed to use matrix-vector multiplications.

