CS-866 Deep Reinforcement Learning

Improved Policy-Based Learning I: Actor-Critic Methods

Nazar Khan
Department of Computer Science
University of the Punjab

Improving Policy Gradients: Reducing High Variance

- ► Vanilla (episodic) policy gradient methods suffer from **high variance**.
- Key Enhancements to Reduce Variance:
 - Actor-Critic: Add a value-based critic using TD bootstrapping to guide updates
 - Baseline Subtraction: Use an advantage function to reduce variance of returns
 - ► **Trust Regions**: Constrain large policy updates for stability (e.g., TRPO, PPO)
 - Exploration Strategies: Encourage high-entropy policies to escape local minima
- ► These techniques dramatically improved the practicality and performance of policy-based RL.

Actor-Critic Bootstrapping: Motivation

Actor-Critic combines policy-based and value-based methods:

- ▶ **Actor**: policy $\pi_{\theta}(a|s)$ (chooses actions)
- ▶ Critic: value function $V_{\phi}(s)$ (evaluates states/actions)

Why Actor-Critic?

- ► REINFORCE: low bias but very high variance
- ► Full-episode sampling ⇒ updates vary wildly
- Actor-Critic keeps low bias, but reduces variance via value bootstrapping

Actor-Critic has become a core RL paradigm (A3C, PPO, SAC, DDPG, ...).

Where Does Variance Come From?

Sources of variance in policy gradients

- 1. Cumulative return variance: Full episode rewards vary greatly
- 2. Gradient estimate variance: Stochastic action samples \Rightarrow noisy gradient

Solutions:

- Bootstrapping for lower reward variance
- ▶ Baseline subtraction (advantage) for lower gradient variance

The critic $V_\phi(s)$ supplies both bootstrapping and baselines.

Network Structure: Actor and Critic

Value function used in Actor-Critic:

$$V_{\phi}(s)$$

Parameterization options

- ▶ Separate networks: θ (actor), ϕ (critic)
- ► Shared body + two heads (policy head + value head)

Notation:

- ightharpoonup Policy parameters θ
- lacktriangle Value-network parameters ϕ

Actor improves policy; critic provides value estimates for stability.

Temporal Difference Bootstrapping

Sampling full episodes gives high variance: many possible trajectories \Rightarrow updates unstable.

Bootstrapping idea:

- ► Use TD targets to estimate returns before episode ends
- n-step bootstrapped target

$$\hat{Q}_{n}(s_{t}, a_{t}) = \sum_{k=0}^{n-1} \gamma^{k} r_{t+k} + \gamma^{n} V_{\phi}(s_{t+n})$$

▶ Interpolates between MC (high variance) and TD (higher bias)

Actor-Critic: Learning Updates

Value function loss:

$$\mathcal{L}(\phi) = \left(\hat{Q}_n(s_t, a_t) - V_{\phi}(s_t)\right)^2$$

Policy gradient update:

$$\nabla_{\theta} J(\theta) = \hat{Q}_n(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Policy uses bootstrapped estimate instead of full return R.

Actor-Critic with Bootstrapping: Pseudocode

Algorithm 1 Actor-Critic with *n*-step Bootstrapping

Initialize policy π_{θ} and value network V_{ϕ}

repeat

for each episode i = 1..M do

Sample trajectory
$$\tau = \{s_0, a_0, r_0, \dots, s_T\}$$

for t = 0..T - 1 do

$$\hat{Q}_{n}(s_{t}, a_{t}) = \sum_{k=0}^{n-1} \gamma^{k} r_{t+k} + \gamma^{n} V_{\phi}(s_{t+n})$$

$$Q_n(S_t, a_t) = 2$$

end for

$$+ \gamma^n V_{\phi}(s_{t+n}) \qquad \triangleright \mathsf{MC} + \mathsf{n-step} \mathsf{TD}$$

 $\phi \leftarrow \phi - \alpha \nabla_{\phi} \sum_{t} (\hat{Q}_{n} - V_{\phi}(s_{t}))^{2}$ $\theta \leftarrow \theta + \alpha \sum_{t} [\hat{Q}_{n} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})]$

until convergence

Key Takeaways

Actor-Critic Summary

- ► Actor learns policy; critic learns value function
- ► Reduces variance vs. vanilla policy gradients
- ▶ Bootstrapping ⇒ better value estimates
- ▶ Uses n-step returns between MC and TD
- ► Foundation for modern RL (A3C, PPO, SAC, etc.)

Baseline Subtraction with Advantage Function

Goal: Reduce variance of policy gradient estimates.

Key idea: Subtract a baseline from returns to lower variance *without changing* the expectation.

Example:

- ► Action returns in a state: 65, 70, 75
- ightharpoonup All positive ightharpoonup vanilla PG pushes all action probabilities up
- ▶ Better: push above-average actions up (75) and below-average down (65)

Baseline: Use value function V(s)

$$A(s,a) = Q(s,a) - V(s)$$

Advantage: Measures improvement of a over expected value of s.

Advantage Function in Practice

Combine bootstrap estimate with baseline:

$$\hat{A}_n(s_t, a_t) = \hat{Q}_n(s_t, a_t) - V_{\phi}(s_t)$$

$$\nabla_{\theta} J(\theta) = \hat{A}_n(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Interpretation:

- lacktriangle Positive advantage o increase probability of action
- lacktriangle Negative advantage ightarrow decrease probability of action
- lacktriangle Zero advantage ightarrow no change

Actor-Critic with Baseline + Bootstrapping

Actor critic: Policy + value function

Algorithm structure:

- ► Collect trajectory
- Compute n-step target and advantage
- Update critic (value function)
- ► Update actor (policy)

Losses:

$$\mathcal{L}_V = (\hat{A}_n)^2$$
 $\mathcal{L}_{\pi} = -\hat{A}_n \log \pi_{\theta}(a|s)$

Pseudocode: Actor-Critic with Advantage

```
Initialize policy \pi_{\theta}, value function V_{\phi}
while not converged do
      for each episode do
            Collect trajectory \tau
            for each time t do
                  \hat{Q}_n = \sum_{k=0}^{n-1} \gamma^k r_{t+k} + \gamma^n V_{\phi}(s_{t+n})
                  \hat{A}_n = \hat{Q}_n - V_\phi(s_t)
            end for
      end for
      \phi \leftarrow \phi - \alpha \nabla_{\phi} \sum_{t} \hat{A}_{n}^{2}
      \theta \leftarrow \theta + \alpha \sum_{t} \hat{A}_{n} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})
end while
```

General Policy Gradient Formulation

$$abla_{ heta} J(heta) = \mathbb{E}\left[\sum_t \Psi_t
abla_{ heta} \log \pi_{ heta}(a_t|s_t)
ight]$$

Choices for target Ψ_t :

$$egin{aligned} \Psi_t &= \hat{Q}_{MC} & ext{Monte Carlo} \ \Psi_t &= \hat{Q}_n & n ext{-step bootstrapping} \ \Psi_t &= \hat{A}_{MC} & ext{Advantage (MC)} \ \Psi_t &= \hat{A}_n & ext{Advantage + bootstrapping} \ \Psi_t &= Q_\phi(s,a) & ext{Critic estimated } Q \end{aligned}$$

A3C (Asynchronous Advantage Actor-Critic)

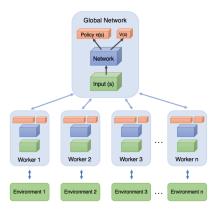
Why A3C?

- Extends advantage actor-critic
- Uses many parallel agents to stabilize learning
- lacktriangle Neural networks estimate both V and A and π
- Asynchronous updates to shared parameters

Benefits:

- Efficient experience collection
- Reduced correlation between samples
- Strong performance on Atari and continuous control

A3C Architecture



- ► Shared CNN feature extractor
- Separate value and policy heads
- ► Parallel actors update global params asynchronously