CS-866 Deep Reinforcement Learning

Improved Policy-Based Learning I: Actor-Critic Methods

Nazar Khan
Department of Computer Science

University of the Punjab



Improving Policy Gradients: Reducing High Variance

» Vanilla (episodic) policy gradient methods suffer from high variance.
» Key Enhancements to Reduce Variance:
» Actor-Critic: Add a value-based critic using TD bootstrapping to guide
updates
» Baseline Subtraction: Use an advantage function to reduce variance of
returns

» Trust Regions: Constrain large policy updates for stability (e.g., TRPO,
PPO)

» Exploration Strategies: Encourage high-entropy policies to escape local
minima
» These techniques dramatically improved the practicality and performance
of policy-based RL.




Actor-Critic Bootstrapping

Actor-Critic Bootstrapping: Motivation

Actor-Critic combines policy-based and value-based methods:
» Actor: policy mg(als) (chooses actions)

» Critic: value function Vj(s) (evaluates states/actions)
Why Actor-Critic?
» REINFORCE: low bias but very high variance

» Full-episode sampling = updates vary wildly

> Actor-Critic keeps low bias, but reduces variance via value bootstrapping

Actor-Critic has become a core RL paradigm (A3C, PPO, SAC, DDPG, ...).




Actor-Critic Bootstrapping

Where Does Variance Come From?

Sources of variance in policy gradients
1. Cumulative return variance: Full episode rewards vary greatly

2. Gradient estimate variance: Stochastic action samples = noisy
gradient

Solutions:
» Bootstrapping for lower reward variance

» Baseline subtraction (advantage) for lower gradient variance

The critic Vi (s) supplies both bootstrapping and baselines.




Actor-Critic Bootstrapping

Network Structure: Actor and Critic

Value function used in Actor-Critic:
Vi (s)

Parameterization options
» Separate networks: 6 (actor), ¢ (critic)
» Shared body + two heads (policy head + value head)

Notation:
» Policy parameters 0
» Value-network parameters ¢

Actor improves policy; critic provides value estimates for stability.




Actor-Critic Bootstrapping

Temporal Difference Bootstrapping

Sampling full episodes gives high variance: many possible trajectories =
updates unstable.

Bootstrapping idea:
» Use TD targets to estimate returns before episode ends
> n-step bootstrapped target

n—1

@n(st; ae) = kaft-s-k + 7" Vi (St4n)
k=0

» Interpolates between MC (high variance) and TD (higher bias)




Actor-Critic Bootstrapping

Actor-Critic: Learning Updates

Value function loss:

N

£(6) = (Qulst.ar) — Vi(se))

Policy gradient update:
Vo J(0) = Qn(st, ar) Vo log mo(arls:)

Policy uses bootstrapped estimate instead of full return R.




Actor-Critic Bootstrapping

Actor-Critic with Bootstrapping: Pseudocode

Algorithm 1 Actor-Critic with n-step Bootstrapping

Initialize policy 7y and value network V/,
repeat
for each episode i = 1..M do
Sample trajectory 7 = {sp, ag, ro, ..., ST}
fort =0..T —1do
@,,(st, at) = Zz;é Sl R Vi (St+n) > MC + n-step TD
end for
end for
D - avqut(@,, — Vy(st))? > Updates in batch mode
0 < 0+ o) ,[QnVologmp(ar|st)]
until convergence




Actor-Critic Bootstrapping

Key Takeaways

Actor-Critic Summary
» Actor learns policy; critic learns value function
» Reduces variance vs. vanilla policy gradients

» Bootstrapping = better value estimates

v

Uses n-step returns between MC and TD
Foundation for modern RL (A3C, PPO, SAC, etc.)

v




Baseline Subtraction

Baseline Subtraction with Advantage Function

Goal: Reduce variance of policy gradient estimates.

Key idea: Subtract a baseline from returns to lower variance without changing
the expectation.

Example:
> Action returns in a state: 65, 70, 75
» All positive — vanilla PG pushes all action probabilities up

» Better: push above-average actions up (75) and below-average down (65)

Baseline: Use value function V/(s)
A(s,a) = Q(s,a) — V(s)

Advantage: Measures improvement of a over expected value of s.




Advantage Function in Practice

Combine bootstrap estimate with baseline:

A\,,(St, at) = én(stv af) - Vd)(st)

VoJ(0) = An(st, at) Vg log mo(acls:)

Interpretation:
» Positive advantage — increase probability of action
» Negative advantage — decrease probability of action

» Zero advantage — no change

Baseline Subtraction




Baseline Subtraction

Actor-Critic with Baseline + Bootstrapping

Actor critic: Policy + value function

Algorithm structure:

v

Collect trajectory

» Compute n-step target and advantage

v

Update critic (value function)

v

Update actor (policy)

Losses: A A
Ly = (A,)? Ly = —A,logm(als)




Pseudocode: Actor-Critic with Advantage

Initialize policy 7y, value function Vj
while not converged do
for each episode do
Collect trajectory T
for eAach time t do
Qn = ZZ;(:; YEresk + 7"V (tin)
An - Qn - V¢(St)
end for
end for .
¢ o —aVy Zt A%
0«—0+a), AVglogmy(arls:)
end while

Baseline Subtraction




Baseline Subtraction

General Policy Gradient Formulation

VoJ(0) Zw Ve log ma(atst)

Choices for target V,:

‘Ut = Quc Monte Carlo

=Q, n-step bootstrapping
\Ift Amic Advantage (MC)
v, = A, Advantage + bootstrapping

= Qyu(s, a) Critic estimated @




Baseline Subtraction

A3C (Asynchronous Advantage Actor-Ciritic)

Why A3C?
» Extends advantage actor-critic
» Uses many parallel agents to stabilize learning
» Neural networks estimate both V and A and 7

» Asynchronous updates to shared parameters

Benefits:
» Efficient experience collection
» Reduced correlation between samples

» Strong performance on Atari and continuous control




Baseline Subtraction

A3C Architecture

Global Network

» Shared CNN feature extractor
» Separate value and policy heads
» Parallel actors update global params asynchronously




	Actor-Critic Bootstrapping
	Baseline Subtraction

