
CS-866 Deep Reinforcement Learning

Deep Value-Based Agents

Nazar Khan

Department of Computer Science

University of the Punjab

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

From Tabular to Deep Agents

I So far, we have studied tabular methods such as
I Monte Carlo Sampling
I SARSA
I Q-learning

I These methods work well for small, discrete environments.

I But what happens when the state space becomes huge or continuous?

Main Challenge

Create an agent algorithm that can learn a good policy by interacting with

the world, even in large, high-dimensional environments.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

The Next Step: Deep Reinforcement Learning

I From now on, our agents will be deep learning agents.

I We combine:

Reinforcement Learning (decision making)

+ Deep Learning (function approximation)

⇒ Deep Reinforcement Learning (DRL)

I DRL allows us to handle:
I Large or continuous state spaces
I Complex perceptual inputs (e.g., images, audio)
I High-dimensional control problems

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Motivation: Beyond Toy Problems

I Simple grid worlds or taxi environments are toy problems.

I Real-world domains:
I Robotics
I Autonomous driving
I Game playing (e.g., Go, Chess, Atari)
I Financial decision-making

I These involve thousands or millions of states and actions.

Key Question

How can we scale from a small tabular Q(s, a) to a powerful neural-
network-based Qθ(s, a)?

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

From Tables to Parameterized Functions

Tabular Methods

I Store Q(s, a) in a lookup table

I Feasible for small, discrete spaces

I Example: Taxi world with 500

states

Deep Methods

I Use a neural network Qθ(s, a)

I θ are trainable weights

I Approximates the value function

for unseen states

Goal

Transform:

V ,Q, π → Vθ,Qθ, πθ

so that our agent can generalize to large or continuous spaces.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Core Questions in Deep Value-Based RL

I How can we use deep learning for large-scale sequential decision-making?

I How do we represent the value or policy functions with neural networks?

I How can we train these networks stably and e�ciently?

I What challenges arise from using non-linear function approximators?

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

From Supervised to Reinforcement Learning

I Deep supervised learning1 uses a static dataset {(xi , yi)}.
I The goal is to approximate a function fθ(x) such that:

θ∗ = argmin
θ
L(fθ(xi), yi)

where L is a loss function.

I The labels yi are �xed, static targets.

I Learning proceeds via gradient descent until the loss converges.

Key Idea

Supervised learning optimizes against known, static truths.

1See Appendix B of Plaat's book

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Bootstrapping as a Minimization Process

I In reinforcement learning, bootstrapping plays a similar role.

I The agent learns from the di�erence between successive estimates:

δt = rt+1 + γ V (st+1)− V (st)

I This temporal di�erence (TD) error acts like a loss term that we try to

minimize.

I Over time, this process converges to the true value functions:

V ∗(s), Q∗(s, a)

Analogy

Supervised learning: minimize (y − ŷ)2

Reinforcement learning: minimize (r + γV (s ′)− V (s))2

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

The Challenge: Moving Targets

I In Q-learning, the data samples are not static.
I The agent's actions generate new experience tuples:

(st , at , rt+1, st+1)

I The target in the loss function,

yt = rt+1 + γmax
a

Qθ(st+1, a),

changes as the network parameters θ change!

I Hence, the target itself moves during training.

Consequence

The Q-network tries to predict targets that depend on itself � this creates

potential instability and divergence.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Dynamic Data and Policy Coupling

I Unlike supervised learning, RL samples depend on the current policy πθ.

I Thus, as πθ improves, the distribution of states and rewards changes.

I The agent is both:
I The generator of its own data, and
I The learner from that data.

I This circular dependency makes convergence hard.

Moving Target Problem

yt(θ) = rt+1 + γmax
a

Qθ(st+1, a)

depends on θ itself � our target moves every time we update the network.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Stability: The Central Challenge of Deep RL

I Finding stable learning algorithms for moving targets took years of

research.

I The key innovations:
I Experience Replay: breaks correlation between consecutive samples.
I Target Networks: stabilize the moving target by freezing parameters

temporarily.
I Careful learning rate tuning.

Why It's Hard

The optimization landscape is non-stationary and self-referential.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Connecting the Three Worlds

Aspect Supervised Learning Tabular Q-learning Deep Q-learning

Data source Static dataset Sampled from environment Sampled, stored, replayed

Targets Fixed labels Bootstrapped rewards Moving bootstrapped rewards

Function type fθ(x) Table Q(s, a) Network Qθ(s, a)
Loss L(y, ŷ) TD Error TD Error with moving target

Stability High Moderate Low (requires tricks)

Summary

Deep Q-learning generalizes Q-learning to large problems by using deep net-

works, but inherits instability from its bootstrapped, moving-target na-
ture.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Overview of Supervised Training

I In supervised deep learning, training minimizes a loss function between

predicted outputs and known targets.

I The dataset is static � both inputs and labels remain �xed throughout

training.

I The optimization aims to approximate a target function through repeated

forward and backward passes.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Typical Supervised Learning Algorithm

1 def train_sl(data , net , alpha =0.001): # train classifier

2 for epoch in range(max_epochs): # an epoch is one

pass

3 sum_sq = 0 # reset to zero for each

pass

4 for (image , label) in data:

5 output = net.forward_pass(image) # predict

6 sum_sq += (output - label)**2 # compute error

7 grad = net.gradient(sum_sq) # derivative of error

8 net.backward_pass(grad , alpha) # adjust weights

9 return net

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Typical Supervised Learning Algorithm

I The main components are:

1. Input dataset: static pairs of inputs and target labels.
2. Forward pass: compute network predictions.
3. Loss computation: measure prediction error.
4. Backward pass: compute gradients and update parameters.

Goal: minimize the loss function over the dataset to �nd parameters that best

�t the data.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Structure of the Training Loops

I Training typically involves a double loop:

1. Outer loop: controls the number of epochs.
2. Inner loop: iterates through each example (or minibatch) of the dataset.

I In each epoch:
I Perform a forward approximation using current parameters.
I Compute the loss and its gradient.
I Adjust the parameters via backpropagation.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Inner Loop Dynamics

I The inner loop provides samples to the forward computation of:
I Output value
I Loss value
I Gradient computation

I The backward pass then adjusts the parameters accordingly.

I The dataset is static, so each epoch processes the same data repeatedly

until convergence.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Independence and Sampling of Data

I Each training sample is assumed to be independent of the others.

I Samples are typically selected with equal probability.

I For example:
I After an image of a white horse is sampled,
I The probability that the next image is a black grouse or a blue moon

remains equally (un)likely.

I This independence ensures that learning is based purely on the data

distribution, not temporal correlations.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Key Characteristics of Supervised Training

I Static dataset ⇒ �xed ground-truth targets.

I Independent samples ⇒ no temporal dependencies.

I Objective ⇒ minimize loss over dataset to achieve best approximation of

the target function.

I The learning process is stable because:
I Targets do not change during training.
I Gradients are computed against �xed labels.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Introduction to Bootstrapping Q-Values

I Q-learning is a foundational reinforcement learning (RL) algorithm.

I Unlike supervised learning, RL chooses its training examples dynamically
through interaction with the environment.

I The algorithm learns by bootstrapping � updating estimates based

partly on other learned estimates.

I For convergence, every state must eventually be sampled by the

environment2.

2Christopher JCH Watkins. `Learning from Delayed Rewards'. PhD thesis. King's
College, Cambridge, 1989.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Challenges of Large State Spaces

I In small environments, it is feasible for all states to be visited repeatedly.

I However, for large or continuous state spaces:
I This condition no longer holds.
I Many states may never be visited.
I Therefore, convergence to the true value function is not guaranteed.

I This motivates the use of function approximation (e.g., deep networks)

in modern RL.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Structure of the Q-Learning Algorithm3

I As with supervised training, Q-learning consists of a double loop:
1. Outer loop: Controls the number of episodes.
2. Inner loop: Iterates through steps within an episode.

I Each episode represents a trajectory from a start state to a terminal state.

1 def qlearn(environment , alpha =0.001 , gamma =0.9, epsilon =0.05):

2 Q[TERMINAL ,_] = 0 # policy

3 for episode in range(max_episodes):

4 s = s0

5 while s not TERMINAL: # perform steps of one full

episode

6 a = epsilongreedy(Q[s], epsilon)

7 (r, sp) = environment(s, a)

8 Q[s,a] = Q[s,a] + alpha*(r+gamma*max(Q[sp])-Q[s,a])

9 s = sp

10 return Q

3Christopher JCH Watkins. `Learning from Delayed Rewards'. PhD thesis. King's
College, Cambridge, 1989.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Representation and Convergence

I Q-values are stored in a Python array indexed by (s, a) pairs:

Q[s, a]

I Q-function represents the expected return for taking action a in state s.

I Convergence is assumed to occur when enough episodes have been

sampled.

I The update rule is bootstrapped from prior estimates:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

O�-Policy Learning in Q-Learning

I Q-learning is an o�-policy method.

I The update target uses the maximum future Q-value, not the value of
the action taken by the current policy.

I This enables learning the optimal policy while following an exploratory

behavior policy (e.g., ε-greedy).

I Hence, even though behavior is stochastic, the learned Q-values re�ect an

optimal deterministic policy.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Di�erences from Supervised Learning

I In Q-learning:
I Samples are not independent.
I Each next action depends on the current policy.
I Successive states are highly correlated in a trajectory.

I Example:
I If the agent samples a state where a ball is in the upper left corner,
I The next state will likely also be near the upper left corner.

I This temporal correlation violates the i.i.d. assumption of supervised

learning.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Consequences of Sample Dependence

I Correlated samples can cause:
I Slow learning due to redundant experiences.
I Instability or divergence in training.
I The network may over�t to local regions of the state space.

I To mitigate this, RL uses:
I Exploration strategies (ε-greedy, softmax, etc.).
I Experience replay to decorrelate samples.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Need for Exploration

I Without su�cient exploration:
I The agent may become trapped in local optima.
I It may fail to discover high-reward states.

I Exploration ensures coverage of diverse states, improving Q-value

estimation.

I Common strategies include:
I ε-greedy policy: random action with probability ε.
I Decaying ε: reduces randomness over time.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Summary of Bootstrapping in Q-Learning

I Q-learning updates are based on bootstrapping previous estimates.

I The process is dynamic: training samples and targets change during

learning.

I Q-learning di�ers from supervised learning because:
I Samples are temporally correlated.
I Targets depend on current estimates (no static ground truth).
I Learning is o�-policy and depends on exploration.

I These factors make convergence di�cult, especially for large problems.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Deep Reinforcement Learning Target-Error

I Deep learning and Q-learning share a striking structural similarity.

I Both algorithms consist of a double loop:
I An outer loop over epochs or episodes.
I An inner loop over samples or steps.

I Each iteration minimizes an error or di�erence between a prediction and a

target.

I This similarity raises the question: Can bootstrapping be combined
with loss-function minimization?

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Combining Bootstrapping and Gradient Descent

I Mnih et al.4 demonstrated that the two processes can indeed be
combined.

I The result is Deep Q-Learning (DQN) � a method that merges:
I Bootstrapping from Q-learning, and
I Gradient-based parameter optimization from deep learning.

I The key idea: train a Q-network that approximates Qθ(s, a) using
backpropagation.

4Volodymyr Mnih et al. `Playing Atari with Deep Reinforcement Learning'. In: (2013).
cite arxiv:1312.5602Comment: NIPS Deep Learning Workshop 2013. URL:
http://arxiv.org/abs/1312.5602.

http://arxiv.org/abs/1312.5602

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Naive Deep Learning Version of Q-Learning

I The structure is still a double loop:

1. Outer loop: controls episodes or training iterations.
2. Inner loop: bootstraps Q-values by minimizing a loss function.

I The parameters θ of the Q-network are updated via stochastic gradient
descent.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Naive Deep Learning Version of Q-Learning

1 def train_qlearn(environment , Qnet , alpha =0.001 , gamma =0.0,

epsilon =0.05

2 s = s0 # initialize start state

3 for epoch in range(max_epochs): # an epoch is one pass

4 sum_sq = 0 # reset to zero for each pass

5 while s not TERMINAL: # perform steps of one full

episode

6 a = epsilongreedy(Qnet(s,a)) # net: Q[s,a]-values

7 (r, sp) = environment(a)

8 output = Qnet.forward_pass(s, a)

9 target = r + gamma * max(Qnet(sp))

10 sum_sq += (target - output)**2

11 s = sp

12 grad = Qnet.gradient(sum_sq)

13 Qnet.backward_pass(grad , alpha)

14 return Qnet # Q-values

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

The Deep Q-Learning Loss Function

I Deep Q-learning minimizes a loss based directly on the Q-learning update

rule.

I The loss at iteration t is:

L(θt) = Es,a,r ,s′

[(
r + γmax

a′
Qθt−1(s

′, a′)− Qθt (s, a)

)2
]

I This is the squared di�erence between:
I The new Q-value Qθt (s, a) (forward pass), and
I The old bootstrapped target r + γmaxa′ Qθt−1(s

′, a′).

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Gradient of the Deep Q-Learning Loss

I The gradient for the parameter update is given by:

∇θiLi (θi) = Es,a∼ρ(·);s′∼E

[(
r + γmax

a′
Qθi−1(s

′, a′)− Qθi (s, a)
)
∇θiQθi (s, a)

]
I Here:

I ρ: behavior distribution (policy used for exploration)
I E : environment dynamics (e.g., Atari emulator)

I This de�nes a �xed-point iteration process5.

5Francisco S Melo and M Isabel Ribeiro. `Convergence of Q-learning with linear function
approximation'. In: 2007 European Control Conference (ECC). IEEE. 2007, pp. 2671�2678.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Moving Targets and Instability

I A crucial distinction from supervised learning:
I In supervised learning, targets are �xed.
I In deep reinforcement learning, targets are moving.

I The target values depend on the previous parameters θt−1:

yt = r + γmax
a′

Qθt−1(s
′, a′)

I Since both prediction and target evolve as learning progresses, the
optimization target moves during training.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Implications of Moving Targets

I Moving targets can lead to:
I Instability: network weights chase a shifting objective.
I Divergence: updates may amplify errors instead of reducing them.
I Non-stationary training signals.

I To mitigate these problems, DQN introduced:
I Target networks � to stabilize the bootstrapped targets.
I Experience replay � to decorrelate samples.

I These innovations made deep reinforcement learning feasible for

large-scale tasks such as Atari games.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Summary: Deep RL Target-Error Concept

I Deep RL integrates:

1. Bootstrapping from temporal-di�erence learning.
2. Loss minimization through gradient descent.

I The target depends on older network weights, making it a moving target.

I Despite this challenge, stability can be achieved with architectural

innovations (target networks, replay bu�ers).

I Deep Q-learning thus bridges the gap between tabular Q-learning and

deep neural function approximation.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Three Core Challenges

I Our naive deep Q-learner faces three fundamental problems:

1. Coverage: The state space is too large to sample fully.
2. Correlation: Subsequent samples are highly correlated.
3. Convergence: The optimization target moves during learning.

I These issues threaten convergence, stability, and generalization of deep

RL agents.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Challenge 1: Coverage

I Proofs of Q-learning's convergence rely on a key assumption:

All state-action pairs (s, a) must eventually be sampled.

I This ensures that Q(s, a) converges to the optimal Q∗(s, a).
I However, in large or continuous environments:

I Full state coverage is impossible.
I Many states may never be visited.

I ⇒ No theoretical guarantee of convergence to the optimal policy.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Coverage in Practice

I Example: Atari game with millions of unique screen states.

I Even after millions of steps, the agent may have visited only a fraction.

I Consequently:
I Q-values for unseen states remain inaccurate.
I Policy may fail catastrophically in novel or rare situations.

I This is a form of out-of-distribution generalization failure.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Challenge 2: Correlation

I In reinforcement learning, samples are not independent.

I Each state st+1 is generated from st by one action:

st+1 = f (st , at)

I Hence, consecutive samples (st , at , rt , st+1) are highly correlated.

I This violates the i.i.d. assumption of stochastic gradient descent.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Consequences of Sample Correlation

I Correlated samples can cause:
I Biased training: updates re�ect a narrow part of the state space.
I Local minima: the policy becomes specialized to a small region.
I Feedback loops: policy reinforces its own biases.

I Example:
I A chess agent always plays one opening.
I It learns strong Q-values only for that opening.
I When the opponent plays a di�erent opening performance collapses.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

The Specialization Trap

I When exploitation dominates exploration:
I The agent repeatedly selects the same actions.
I State trajectories become repetitive.
I The agent gets stuck in a �specialization trap.�

I This worsens both:
I Coverage: fewer distinct states sampled.
I Convergence: biased gradients lead to over�tting.

I The result: poor generalization and unstable learning.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Challenge 3: Convergence

I In supervised learning:
I Targets y are �xed.
I Loss L(θ) = (y − fθ(x))

2 minimizes toward a stable solution.

I In deep reinforcement learning:
I Targets move because they depend on θt−1.
I Bootstrapped target:

yt = r + γmax
a′

Qθt−1(s
′, a′)

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Moving Targets and Instability

I The loss at time t is:

L(θt) =
(
r + γmax

a′
Qθt−1(s

′, a′)− Qθt (s, a)

)2

I Both prediction and target depend on parameters being optimized.

I ⇒ Risk of:
I Overshooting the target.
I Oscillation or even divergence.

I Gradient descent �chases� a target that moves with every update.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Why Convergence is Di�cult

I Reinforcement learning optimizes a function that depends on itself:

Qθ(s, a) ≈ r + γmax
a′

Qθ(s
′, a′)

I This circular dependency causes:
I Non-stationary targets
I Instability in gradient-based updates

I Considerable research e�ort has gone into �nding algorithms that:
I Break this circular dependency,
I And stabilize learning despite moving targets.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Summary: The Three Challenges

1. Coverage

Large state spaces prevent full sampling ⇒ incomplete Q-values.

2. Correlation

Sequential samples are correlated⇒ biased updates and specialization traps.

3. Convergence

Targets move with parameters ⇒ instability and potential divergence.

I Overcoming these challenges led to key innovations: Experience Replay
and Target Networks.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

The Deadly Triad: Overview

I Combining o�-policy learning with nonlinear function approximation
can cause Q-values to diverge.6'7'8

I Three interacting elements make reinforcement learning unstable:

1. Function approximation
2. Bootstrapping
3. O�-policy learning

I Together, they form the Deadly Triad9.

6Leemon Baird. `Residual algorithms: Reinforcement learning with function
approximation'. In: Machine Learning Proceedings 1995. Elsevier, 1995, pp. 30�37.

7Geo�rey J Gordon. Approximate solutions to Markov decision processes. Carnegie
Mellon University, 1999.

8John N Tsitsiklis and Benjamin Van Roy. `Analysis of temporal-di�ference learning with
function approximation'. In: Advances in Neural Information Processing Systems. 1997,
pp. 1075�1081.

9Richard S Sutton and Andrew G Barto. Reinforcement learning, An Introduction,
Second Edition. MIT Press, 2018.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Function Approximation

I Function approximators (e.g., neural networks) estimate Q(s, a) using
shared features between states.

I Unlike exact tabular methods, deep networks generalize over state

features:

Q(s, a) ≈ fθ(φ(s), a)

I Errors in shared features can cause misidenti�cation of states.

I Reward values or Q-values can then be attributed incorrectly to unrelated

states.

Implication

Misassigned values can cause instability or divergence during learning.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Bootstrapping

I In temporal-di�erence and Q-learning, current estimates depend on

previous estimates:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]
I Bootstrapping speeds up training since values need not be computed from

scratch.

I However, errors in early estimates can propagate and amplify.

I With function approximation, these errors can a�ect multiple states that

share features.

Key Issue

Bootstrapping + Function Approximation⇒ Persistent and spreading errors.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

O�-Policy Learning

I O�-policy methods (e.g., Q-learning) learn from a behavior policy πb
that di�ers from the target policy π.

I The learning update uses:

Qπ(s, a) = E
[
r + γmax

a′
Qπ(s ′, a′)

]
I The policy used for exploration may not generate data representative of

the optimal policy's state distribution.

I This can cause poor convergence or divergence, especially when combined

with function approximation.

Observation

O�-policy learning is less stable than on-policy learning, and stability worsens

with nonlinear function approximators.

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Interaction of the Triad

I Each element of the triad alone can

cause instability.

I Together, they can result in:
I Divergent Q-values
I Oscillatory learning
I Poor convergence

I Example:

function approx.+bootstrapping+o�-policy data⇒ divergence

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Illustration of the deadly triad interaction.

Function
Approximation

Bootstrapping
O�-policy
Learning

shared

features

propagates

errors

out-of-dist

data

The
Deadly Triad

Risks: Divergence / Oscillations / Instability

Mitigations: Experience Replay, Target Networks, Double Q, On-policy methods

Large Problems Bootstrapping Q-Values DRL Target-Error Three Challenges Deadly Triad

Avoiding the Deadly Triad

I Several techniques have been developed to mitigate instability:
I Experience Replay (reduces correlation)
I Target Networks (stabilize bootstrapping)
I On-policy algorithms (e.g., SARSA, A3C)
I Double Q-learning (reduces overestimation bias)

I Stable deep RL became possible with these methods10.

Key Idea

Breaking at least one link in the triad (approximation, bootstrapping, or

o�-policy) helps achieve convergence.

10Volodymyr Mnih et al. `Human-level control through deep reinforcement learning'. In:
Nature 518.7540 (2015), pp. 529�533.

	Large Problems
	Bootstrapping Q-Values
	DRL Target-Error
	Three Challenges
	Deadly Triad

