CS-866 Deep Reinforcement Learning

Deep Value-Based Agents

Nazar Khan
Department of Computer Science
University of the Punjab

From Tabular to Deep Agents

- ► So far, we have studied tabular methods such as
 - Monte Carlo Sampling
 - SARSA

Large Problems

- ► Q-learning
- ► These methods work well for **small**, **discrete environments**.
- But what happens when the state space becomes huge or continuous?

Main Challenge

Create an **agent algorithm** that can learn a good policy *by interacting with the world*, even in large, high-dimensional environments.

The Next Step: Deep Reinforcement Learning

- From now on, our agents will be deep learning agents.
- ▶ We combine:

Large Problems

Reinforcement Learning (decision making)

- + Deep Learning (function approximation)
 - ⇒ Deep Reinforcement Learning (DRL)
- DRL allows us to handle:
 - ► Large or continuous state spaces
 - Complex perceptual inputs (e.g., images, audio)
 - ► High-dimensional control problems

Motivation: Beyond Toy Problems

- ► Simple grid worlds or taxi environments are toy problems.
- Real-world domains:
 - Robotics
 - Autonomous driving
 - Game playing (e.g., Go, Chess, Atari)
 - Financial decision-making
- ▶ These involve thousands or millions of states and actions.

Key Question

How can we scale from a small tabular Q(s,a) to a powerful neuralnetwork-based $Q_{\theta}(s, a)$?

From Tables to Parameterized Functions

Tabular Methods

- ▶ Store Q(s, a) in a lookup table
- ► Feasible for small, discrete spaces
- Example: Taxi world with 500 states

Deep Methods

- ▶ Use a neural network $Q_{\theta}(s, a)$
- \triangleright θ are trainable weights
- Approximates the value function for unseen states

Goal

Transform:

$$V, Q, \pi \rightarrow V_{\theta}, Q_{\theta}, \pi_{\theta}$$

so that our agent can generalize to large or continuous spaces.

Core Questions in Deep Value-Based RL

- ▶ How can we use deep learning for large-scale sequential decision-making?
- ▶ How do we represent the value or policy functions with neural networks?
- ► How can we train these networks stably and efficiently?
- What challenges arise from using non-linear function approximators?

From Supervised to Reinforcement Learning

- Deep supervised learning¹ uses a static dataset $\{(x_i, y_i)\}$.
- ▶ The goal is to approximate a function $f_{\theta}(x)$ such that:

$$\theta^* = \arg\min_{\theta} \mathcal{L}(f_{\theta}(x_i), y_i)$$

where \mathcal{L} is a loss function.

- ► The labels y; are fixed, static targets.
- ► Learning proceeds via gradient descent until the loss converges.

Key Idea

Supervised learning optimizes against known, static truths.

¹See Appendix B of Plaat's book

Bootstrapping as a Minimization Process

- ► In reinforcement learning, **bootstrapping** plays a similar role.
- ▶ The agent learns from the difference between successive estimates:

$$\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$

- ► This temporal difference (TD) error acts like a loss term that we try to minimize.
- ▶ Over time, this process converges to the true value functions:

$$V^*(s)$$
, $Q^*(s,a)$

Analogy

Supervised learning: minimize $(y - \hat{y})^2$

Reinforcement learning: minimize $(r + \gamma V(s') - V(s))^2$

The Challenge: Moving Targets

- ▶ In Q-learning, the data samples are **not static**.
- ► The agent's actions generate new experience tuples:

$$(s_t, a_t, r_{t+1}, s_{t+1})$$

► The target in the loss function,

$$y_t = r_{t+1} + \gamma \max_{a} Q_{\theta}(s_{t+1}, a),$$

changes as the network parameters heta change!

► Hence, the target itself moves during training.

Consequence

The Q-network tries to predict targets that depend on itself — this creates potential instability and divergence.

Dynamic Data and Policy Coupling

- ▶ Unlike supervised learning, RL samples depend on the current policy π_{θ} .
- \blacktriangleright Thus, as π_{θ} improves, the distribution of states and rewards changes.
- The agent is both:
 - ▶ The **generator** of its own data, and
 - ► The **learner** from that data
- This circular dependency makes convergence hard.

Moving Target Problem

$$y_t(\theta) = r_{t+1} + \gamma \max_{\theta} Q_{\theta}(s_{t+1}, a)$$

depends on θ itself — our target moves every time we update the network.

- ► Finding stable learning algorithms for moving targets took years of research.
- ► The key innovations:

Large Problems

- ► Experience Replay: breaks correlation between consecutive samples.
- ► Target Networks: stabilize the moving target by freezing parameters temporarily.
- Careful learning rate tuning.

Why It's Hard

The optimization landscape is non-stationary and self-referential.

Connecting the Three Worlds

Aspect	Supervised Learning	Tabular Q-learning	Deep Q-learning
Data source	Static dataset	Sampled from environment	Sampled, stored, replayed
Targets	Fixed labels	Bootstrapped rewards	Moving bootstrapped rewards
Function type	$f_{\theta}(x)$	Table $Q(s, a)$	Network $Q_{\theta}(s, a)$
Loss	$\mathcal{L}(y, \hat{y})$	TD Error	TD Error with moving target
Stability	High	Moderate	Low (requires tricks)

Summary

Deep Q-learning generalizes Q-learning to large problems by using deep networks, but inherits instability from its **bootstrapped**, **moving-target** nature.

Overview of Supervised Training

Large Problems

▶ In supervised deep learning, training minimizes a loss function between predicted outputs and known targets.

The dataset is static — both inputs and labels remain fixed throughout

- training.
- ► The optimization aims to approximate a target function through repeated forward and backward passes.

Typical Supervised Learning Algorithm

```
def train_sl(data, net, alpha=0.001):
                                          # train classifier
    for epoch in range (max_epochs):
                                          # an epoch is one
       pass
                                   # reset to zero for each
        sum_sq = 0
           pass
        for (image, label) in data:
            output = net.forward_pass(image) # predict
            sum_sq += (output - label)**2 # compute error
        grad = net.gradient(sum_sq) # derivative of error
        net.backward_pass(grad, alpha) # adjust weights
    return net
```

Typical Supervised Learning Algorithm

- ► The main components are:
 - 1. Input dataset: static pairs of inputs and target labels.
 - 2. Forward pass: compute network predictions.
 - 3. Loss computation: measure prediction error.
 - 4. Backward pass: compute gradients and update parameters.

Goal: minimize the loss function over the dataset to find parameters that best fit the data.

Structure of the Training Loops

- Training typically involves a double loop:
 - 1. Outer loop: controls the number of epochs.
 - 2. Inner loop: iterates through each example (or minibatch) of the dataset.
- ► In each epoch:
 - Perform a forward approximation using current parameters.
 - Compute the loss and its gradient.
 - Adjust the parameters via backpropagation.

iller Loop Dynamics

- ► The inner loop provides samples to the forward computation of:
 - Output value
 - Loss value
 - ► Gradient computation
- ► The **backward pass** then adjusts the parameters accordingly.
- ► The dataset is static, so each epoch processes the same data repeatedly until convergence.

- ► Each training sample is assumed to be **independent** of the others.
- Samples are typically selected with equal probability.
- For example:
 - After an image of a white horse is sampled,
 - ► The probability that the next image is a black grouse or a blue moon remains equally (un)likely.
- ▶ This independence ensures that learning is based purely on the data distribution, not temporal correlations.

Large Problems

Key Characteristics of Supervised Training

- ► Static dataset ⇒ fixed ground-truth targets.
- Independent samples \Rightarrow no temporal dependencies.
- ▶ Objective ⇒ minimize loss over dataset to achieve best approximation of the target function.
- ► The learning process is stable because:
 - Targets do not change during training.
 - Gradients are computed against fixed labels.

Introduction to Bootstrapping Q-Values

- ▶ Q-learning is a foundational reinforcement learning (RL) algorithm.
- ▶ Unlike supervised learning, RL chooses its training examples dynamically through interaction with the environment.
- ► The algorithm learns by **bootstrapping** updating estimates based partly on other learned estimates.
- ▶ For convergence, every state must eventually be sampled by the environment²

²Christopher JCH Watkins. 'Learning from Delayed Rewards'. PhD thesis. King's College, Cambridge, 1989.

Challenges of Large State Spaces

- ▶ In small environments, it is feasible for all states to be visited repeatedly.
- However, for large or continuous state spaces:
 - ► This condition no longer holds.
 - Many states may never be visited.
 - ► Therefore, convergence to the true value function is not guaranteed.
- ► This motivates the use of function approximation (e.g., deep networks) in modern RI

Structure of the Q-Learning Algorithm³

- ► As with supervised training, Q-learning consists of a **double loop**:
 - 1. Outer loop: Controls the number of episodes.
 - 2. Inner loop: Iterates through steps within an episode.
- ► Each episode represents a trajectory from a start state to a terminal state.

³ Christopher JCH Watkins. 'Learning from Delayed Rewards'. PhD thesis. King's College, Cambridge, 1989.

Representation and Convergence

 \triangleright Q-values are stored in a **Python array** indexed by (s, a) pairs:

- Q-function represents the expected return for taking action a in state s.
- Convergence is assumed to occur when enough episodes have been sampled.
- ► The update rule is **bootstrapped** from prior estimates:

$$Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$

Off-Policy Learning in Q-Learning

- ► Q-learning is an **off-policy** method.
- ► The update target uses the maximum future Q-value, not the value of the action taken by the current policy.

This enables learning the optimal policy while following an exploratory

- behavior policy (e.g., *ϵ*-greedy).

 ► Hence, even though behavior is stochastic, the learned Q-values reflect an
- Hence, even though behavior is stochastic, the learned Q-values reflect an optimal deterministic policy.

Differences from Supervised Learning

- ► In Q-learning:
 - Samples are not independent.
 - Each next action depends on the current policy.
 - Successive states are highly correlated in a trajectory.
- ► Example:
 - ▶ If the agent samples a state where a ball is in the upper left corner,
 - ▶ The next state will likely also be near the upper left corner.
- This temporal correlation violates the i.i.d. assumption of supervised learning.

Consequences of Sample Dependence

- Correlated samples can cause:
 - ▶ Slow learning due to redundant experiences.
 - ► **Instability** or divergence in training.
 - ▶ The network may overfit to local regions of the state space.
- ► To mitigate this, RL uses:
 - **Exploration strategies** (ϵ -greedy, softmax, etc.).
 - **Experience replay** to decorrelate samples.

Need for Exploration

- Without sufficient exploration:
 - ▶ The agent may become trapped in local optima.
 - ▶ It may fail to discover high-reward states.
- Exploration ensures coverage of diverse states, improving Q-value estimation.
- Common strategies include:
 - \triangleright ϵ -greedy policy: random action with probability ϵ .
 - \triangleright Decaying ϵ : reduces randomness over time.

Summary of Bootstrapping in Q-Learning

- Q-learning updates are based on bootstrapping previous estimates.
- The process is dynamic: training samples and targets change during learning.
- Q-learning differs from supervised learning because:
 - Samples are temporally correlated.
 - Targets depend on current estimates (no static ground truth).
 - ► Learning is off-policy and depends on exploration.
- These factors make convergence difficult, especially for large problems.

Deep Reinforcement Learning Target-Error

- Deep learning and Q-learning share a striking structural similarity.
- ▶ Both algorithms consist of a **double loop**:
 - ► An **outer loop** over epochs or episodes.
 - ► An inner loop over samples or steps.
- ► Each iteration minimizes an error or difference between a prediction and a target.
- ► This similarity raises the question: Can bootstrapping be combined with loss-function minimization?

Combining Bootstrapping and Gradient Descent

- ► Mnih et al.⁴ demonstrated that the two processes can indeed be combined
- ▶ The result is **Deep Q-Learning (DQN)** a method that merges:
 - ▶ Bootstrapping from Q-learning, and
 - ► Gradient-based parameter optimization from deep learning.
- ▶ The key idea: train a **Q-network** that approximates $Q_{\theta}(s, a)$ using backpropagation.

⁴Volodymyr Mnih et al. 'Playing Atari with Deep Reinforcement Learning'. In: (2013). cite arxiv:1312.5602Comment: NIPS Deep Learning Workshop 2013. URL: http://arxiv.org/abs/1312.5602.

Naive Deep Learning Version of Q-Learning

- ► The structure is still a double loop:
 - 1. Outer loop: controls episodes or training iterations.
 - 2. Inner loop: bootstraps Q-values by minimizing a loss function.
- ▶ The parameters θ of the Q-network are updated via **stochastic gradient** descent.

```
def train_qlearn(environment, Qnet, alpha=0.001, gamma=0.0,
   epsilon = 0.05
                     # initialize start state
    s = s0
    for epoch in range (max_epochs): # an epoch is one pass
        sum_sq = 0 # reset to zero for each pass
        while s not TERMINAL: # perform steps of one full
            episode
            a = epsilongreedy(Qnet(s,a)) # net: Q[s,a]-values
            (r, sp) = environment(a)
            output = Qnet.forward_pass(s, a)
            target = r + gamma * max(Qnet(sp))
            sum_sq += (target - output)**2
            s = sp
        grad = Qnet.gradient(sum_sq)
        Qnet.backward_pass(grad, alpha)
    return Qnet # Q-values
```

The Deep Q-Learning Loss Function

- Deep Q-learning minimizes a loss based directly on the Q-learning update rule.
- ▶ The loss at iteration t is:

$$\mathcal{L}(\theta_t) = \mathbb{E}_{s,a,r,s'} \left[\left(r + \gamma \max_{a'} Q_{\theta_{t-1}}(s',a') - Q_{\theta_t}(s,a) \right)^2 \right]$$

- ► This is the squared difference between:
 - ▶ The new Q-value $Q_{\theta_*}(s, a)$ (forward pass), and
 - ▶ The old bootstrapped target $r + \gamma \max_{a'} Q_{\theta_*}$, (s', a').

Gradient of the Deep Q-Learning Loss

▶ The gradient for the parameter update is given by:

$$abla_{ heta_i} \mathcal{L}_i(heta_i) = \mathbb{E}_{s, a \sim
ho(\cdot); s' \sim \mathcal{E}} \left[\left(r + \gamma \max_{a'} Q_{ heta_{i-1}}(s', a') - Q_{ heta_i}(s, a)
ight)
abla_{ heta_i} Q_{ heta_i}(s, a)
ight]$$

- ► Here:
 - \triangleright ρ : behavior distribution (policy used for exploration)
 - \triangleright \mathcal{E} : environment dynamics (e.g., Atari emulator)
- ► This defines a **fixed-point iteration** process⁵.

⁵Francisco S Melo and M Isabel Ribeiro. 'Convergence of Q-learning with linear function approximation'. In: 2007 European Control Conference (ECC). IEEE. 2007, pp. 2671-2678.

Moving Targets and Instability

- A crucial distinction from supervised learning:
 - ► In supervised learning, targets are **fixed**.
 - ► In deep reinforcement learning, targets are **moving**.
- ▶ The target values depend on the previous parameters θ_{t-1} :

$$y_t = r + \gamma \max_{a'} Q_{\theta_{t-1}}(s', a')$$

Since both prediction and target evolve as learning progresses, the optimization target moves during training.

Implications of Moving Targets

- Moving targets can lead to:
 - ► Instability: network weights chase a shifting objective.
 - ▶ **Divergence**: updates may amplify errors instead of reducing them.
 - ► Non-stationary training signals.
- ▶ To mitigate these problems, DQN introduced:
 - ► Target networks to stabilize the bootstrapped targets.
 - ► Experience replay to decorrelate samples.
- ► These innovations made deep reinforcement learning feasible for large-scale tasks such as **Atari games**.

Summary: Deep RL Target-Error Concept

- Deep RL integrates:
 - 1. Bootstrapping from temporal-difference learning.
 - 2. Loss minimization through gradient descent.
- ▶ The target depends on older network weights, making it a moving target.
- Despite this challenge, stability can be achieved with architectural innovations (target networks, replay buffers).
- Deep Q-learning thus bridges the gap between tabular Q-learning and deep neural function approximation.

Three Core Challenges

- Our naive deep Q-learner faces three fundamental problems:
 - 1. Coverage: The state space is too large to sample fully.
 - 2. Correlation: Subsequent samples are highly correlated.
 - 3. Convergence: The optimization target moves during learning.
- ► These issues threaten convergence, stability, and generalization of deep RL agents.

- ▶ Proofs of Q-learning's convergence rely on a key assumption:
 - All state-action pairs (s,a) must eventually be sampled.
- ▶ This ensures that Q(s, a) converges to the optimal $Q^*(s, a)$.
- ► However, in large or continuous environments:
 - ► Full state coverage is **impossible**.
 - Many states may never be visited.
- ightharpoonup ightharpoonup No theoretical guarantee of convergence to the optimal policy.

Coverage in Practice

- Example: Atari game with millions of unique screen states.
- ▶ Even after millions of steps, the agent may have visited only a fraction.
- ► Consequently:
 - Q-values for unseen states remain inaccurate.
 - ▶ Policy may fail catastrophically in novel or rare situations.
- ► This is a form of **out-of-distribution generalization** failure.

Challenge 2: Correlation

- ▶ In reinforcement learning, samples are **not independent**.
- ▶ Each state s_{t+1} is generated from s_t by one action:

$$s_{t+1} = f(s_t, a_t)$$

- ▶ Hence, consecutive samples (s_t, a_t, r_t, s_{t+1}) are **highly correlated**.
- ▶ This violates the i.i.d. assumption of stochastic gradient descent.

Consequences of Sample Correlation

- ► Correlated samples can cause:
 - ▶ Biased training: updates reflect a narrow part of the state space.
 - ▶ Local minima: the policy becomes specialized to a small region.
 - ► Feedback loops: policy reinforces its own biases.
- Example:
 - A chess agent always plays one opening.
 - ▶ It learns strong Q-values only for that opening.
 - ▶ When the opponent plays a different opening performance collapses.

The Specialization Trap

- When exploitation dominates exploration:
 - ▶ The agent repeatedly selects the same actions.
 - State trajectories become repetitive.
 - ► The agent gets stuck in a "specialization trap."
- This worsens both:
 - Coverage: fewer distinct states sampled.
 - ► Convergence: biased gradients lead to overfitting.
- The result: poor generalization and unstable learning.

Challenge 3: Convergence

- In supervised learning:
 - ► Targets y are **fixed**.
 - ▶ Loss $\mathcal{L}(\theta) = (y f_{\theta}(x))^2$ minimizes toward a stable solution.
- ► In deep reinforcement learning:
 - ▶ Targets **move** because they depend on θ_{t-1} .
 - Bootstrapped target:

$$y_t = r + \gamma \max_{a'} Q_{\theta_{t-1}}(s', a')$$

Moving Targets and Instability

► The loss at time t is:

$$\mathcal{L}(heta_t) = \left(r + \gamma \max_{a'} Q_{ heta_{t-1}}(s', a') - Q_{ heta_t}(s, a)
ight)^2$$

- ▶ Both prediction and target depend on parameters being optimized.
- ightharpoonup \Rightarrow Risk of:
 - Overshooting the target.
 - Oscillation or even divergence.
- ► Gradient descent "chases" a target that moves with every update.

Why Convergence is Difficult

► Reinforcement learning optimizes a function that depends on itself:

$$Q_{\theta}(s, a) \approx r + \gamma \max_{a'} Q_{\theta}(s', a')$$

- This circular dependency causes:
 - ► Non-stationary targets
 - ► Instability in gradient-based updates
- ► Considerable research effort has gone into finding algorithms that:
 - Break this circular dependency,
 - ► And stabilize learning despite moving targets.

Summary: The Three Challenges

1. Coverage

Large state spaces prevent full sampling ⇒ incomplete Q-values.

2. Correlation

Sequential samples are correlated \Rightarrow biased updates and specialization traps.

3. Convergence

Targets move with parameters \Rightarrow instability and potential divergence.

Overcoming these challenges led to key innovations: Experience Replay and Target Networks.

The Deadly Triad: Overview

- ► Combining off-policy learning with nonlinear function approximation can cause Q-values to diverge.6'7'8
- ► Three interacting elements make reinforcement learning unstable:
 - 1. Function approximation
 - 2. Bootstrapping
 - 3. Off-policy learning
- ► Together, they form the **Deadly Triad**⁹.

⁶Leemon Baird. 'Residual algorithms: Reinforcement learning with function approximation'. In: Machine Learning Proceedings 1995. Elsevier, 1995, pp. 30-37.

⁷Geoffrey J Gordon. Approximate solutions to Markov decision processes. Carnegie Mellon University, 1999.

⁸ John N Tsitsiklis and Benjamin Van Roy. 'Analysis of temporal-diffference learning with function approximation'. In: Advances in Neural Information Processing Systems. 1997, pp. 1075-1081.

⁹Richard S Sutton and Andrew G Barto. Reinforcement learning, An Introduction, Second Edition MIT Press. 2018.

Function approximators (e.g., neural networks) estimate Q(s, a) using shared features between states

▶ Unlike exact tabular methods, deep networks generalize over state features:

$$Q(s,a) \approx f_{\theta}(\phi(s),a)$$

- ► Errors in shared features can cause misidentification of states.
- Reward values or Q-values can then be attributed incorrectly to unrelated states.

Implication

Misassigned values can cause instability or divergence during learning.

Bootstrapping

► In temporal-difference and Q-learning, current estimates depend on previous estimates:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \big[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \big]$$

- Bootstrapping speeds up training since values need not be computed from scratch.
- ► However, errors in early estimates can propagate and amplify.
- ▶ With function approximation, these errors can affect multiple states that share features.

Key Issue

 ${\sf Bootstrapping + Function \; Approximation} \Rightarrow {\sf Persistent \; and \; spreading \; errors}.$

Off-Policy Learning

- ▶ Off-policy methods (e.g., Q-learning) learn from a **behavior policy** π_b that differs from the **target policy** π .
- ► The learning update uses:

$$Q^{\pi}(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q^{\pi}(s',a')\right]$$

- ► The policy used for exploration may not generate data representative of the optimal policy's state distribution.
- ► This can cause poor convergence or divergence, especially when combined with function approximation.

Observation

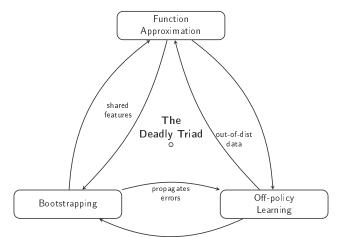
Off-policy learning is less stable than on-policy learning, and stability worsens with nonlinear function approximators.

Interaction of the Triad

- ► Each element of the triad alone can cause instability.
- ► Together, they can result in:
 - Divergent Q-values
 - Oscillatory learning
 - Poor convergence
- Example:

 $function \ approx. + bootstrapping + off-policy \ data \Rightarrow divergence$

Illustration of the deadly triad interaction.



Risks: Divergence / Oscillations / Instability

Mitigations: Experience Replay, Target Networks, Double Q, On-policy methods

Avoiding the Deadly Triad

- ► Several techniques have been developed to mitigate instability:
 - Experience Replay (reduces correlation)
 - ► Target Networks (stabilize bootstrapping)
 - On-policy algorithms (e.g., SARSA, A3C)
- Double Q-learning (reduces overestimation bias)
- ► Stable deep RL became possible with these methods¹⁰.

Key Idea

Breaking at least one link in the triad (approximation, bootstrapping, or off-policy) helps achieve convergence.

¹⁰Volodymyr Mnih et al. 'Human-level control through deep reinforcement learning'. In *Nature* 518.7540 (2015), pp. 529-533.