CS-866 Deep Reinforcement Learning

Deep Value-Based Agents

Nazar Khan
Department of Computer Science

University of the Punjab

Large Problems

From Tabular to Deep Agents

» So far, we have studied tabular methods such as

» Monte Carlo Sampling
» SARSA
» Q-learning

» These methods work well for small, discrete environments.

» But what happens when the state space becomes huge or continuous?

Main Challenge

Create an agent algorithm that can learn a good policy by interacting with
the world, even in large, high-dimensional environments.

Large Problems

The Next Step: Deep Reinforcement Learning

» From now on, our agents will be deep learning agents.

» We combine:

Reinforcement Learning (decision making)
+ Deep Learning (function approximation)
= Deep Reinforcement Learning (DRL)

» DRL allows us to handle:
» Large or continuous state spaces
» Complex perceptual inputs (e.g., images, audio)
» High-dimensional control problems

Large Problems

Motivation: Beyond Toy Problems

» Simple grid worlds or taxi environments are toy problems.

» Real-world domains:

Robotics

Autonomous driving

Game playing (e.g., Go, Chess, Atari)
Financial decision-making

» These involve thousands or millions of states and actions.

v

vV vy

Key Question
How can we scale from a small tabular Q(s,a) to a powerful neural-
network-based Qy(s, a)?

Large Problems

From Tables to Parameterized Functions

Tabular Methods Deep Methods
» Store Q(s,a) in a lookup table » Use a neural network Qy(s, a)
» Feasible for small, discrete spaces » 6 are trainable weights
» Example: Taxi world with 500 » Approximates the value function
states for unseen states
Goal
Transform:

V7 Q’T‘- — V97 Q077T9

so that our agent can generalize to large or continuous spaces.

Large Problems

Core Questions in Deep Value-Based RL

» How can we use deep learning for large-scale sequential decision-making?

v

How do we represent the value or policy functions with neural networks?

» How can we train these networks stably and efficiently?

v

What challenges arise from using non-linear function approximators?

Large Problems

From Supervised to Reinforcement Learning

Deep supervised learning! uses a static dataset {(x;,y;)}.

v

The goal is to approximate a function fy(x) such that:

v

0* = arg mein L(fy(xi), yi)

where L is a loss function.
The labels y; are fixed, static targets.

v

Learning proceeds via gradient descent until the loss converges.

v

Key Idea

Supervised learning optimizes against known, static truths.

!See Appendix B of Plaat’s book

Large Problems

Bootstrapping as a Minimization Process

v

In reinforcement learning, bootstrapping plays a similar role.

v

The agent learns from the difference between successive estimates:

0¢ = rev1 + 7 V(str1) — V(se)

v

This temporal difference (TD) error acts like a loss term that we try to
minimize.

» Over time, this process converges to the true value functions:

V*(s), Q(s,a)

Analogy

Supervised learning: minimize (y — §)?
Reinforcement learning: minimize (r +yV/(s') — V(s))?

Large Problems

The Challenge: Moving Targets

» In Q-learning, the data samples are not static.
» The agent's actions generate new experience tuples:

(s> at, re+1, Se+1)
» The target in the loss function,
Yt = 41 +7 m;x Qo(St+1,),

changes as the network parameters 6 change!
» Hence, the target itself moves during training.

Consequence

The Q-network tries to predict targets that depend on itself — this creates
potential instability and divergence.

Large Problems

Dynamic Data and Policy Coupling

v

Unlike supervised learning, RL samples depend on the current policy my.
Thus, as 7y improves, the distribution of states and rewards changes.

The agent is both:

» The generator of its own data, and
» The learner from that data.

v

v

This circular dependency makes convergence hard.

v

Moving Target Problem

ye(0) = rey1 + mgx Qo(5t41,a)

depends on @ itself — our target moves every time we update the network.

Large Problems

Stability: The Central Challenge of Deep RL

» Finding stable learning algorithms for moving targets took years of

research.

» The key innovations:
» Experience Replay: breaks correlation between consecutive samples.

» Target Networks: stabilize the moving target by freezing parameters

temporarily.
» Careful learning rate tuning.

Why It’s Hard
The optimization landscape is non-stationary and self-referential.

Large Problems

Connecting the Three Worlds

Aspect Supervised Learning Tabular Q-learning Deep Q-learning

Data source Static dataset Sampled from environment Sampled, stored, replayed

Targets Fixed labels Bootstrapped rewards Moving bootstrapped rewards

Function type fo(x) Table Q(s, a) Network Qg (s, a)

Loss L(y,9) TD Error TD Error with moving target

Stability High Moderate Low (requires tricks)
Summary

Deep Q-learning generalizes Q-learning to large problems by using deep net-
works, but inherits instability from its bootstrapped, moving-target na-
ture.

Large Problems

Overview of Supervised Training

> In supervised deep learning, training minimizes a loss function between
predicted outputs and known targets.

» The dataset is static — both inputs and labels remain fixed throughout
training.

» The optimization aims to approximate a target function through repeated
forward and backward passes.

Large Problems

Typical Supervised Learning Algorithm

def train_sl (data, net, alpha=0.001): # train classifier
for epoch in range (max_epochs): # an epoch is omne
pass
sum_sq = 0 # reset to zero for each
pass
for (image, label) in data:
output = net.forward_pass (image) # predict
sum_sq += (output - label)**2 # compute error
grad = net.gradient (sum_sq) # derivative of error
net.backward_pass (grad, alpha) # adjust weights

return net

Large Problems

Typical Supervised Learning Algorithm

» The main components are:
1. Input dataset: static pairs of inputs and target labels.
2. Forward pass: compute network predictions.
3. Loss computation: measure prediction error.
4. Backward pass: compute gradients and update parameters.

Goal: minimize the loss function over the dataset to find parameters that best
fit the data.

Large Problems

Structure of the Training Loops

» Training typically involves a double loop:

1. Quter loop: controls the number of epochs.
2. Inner loop: iterates through each example (or minibatch) of the dataset.

» In each epoch:
» Perform a forward approximation using current parameters.
» Compute the loss and its gradient.
» Adjust the parameters via backpropagation.

Large Problems

Inner Loop Dynamics

» The inner loop provides samples to the forward computation of:

» Output value
» Loss value
» Gradient computation

» The backward pass then adjusts the parameters accordingly.
» The dataset is static, so each epoch processes the same data repeatedly

until convergence.

Large Problems

Independence and Sampling of Data

» Each training sample is assumed to be independent of the others.

» Samples are typically selected with equal probability.
» For example:
» After an image of a white horse is sampled,
» The probability that the next image is a black grouse or a blue moon
remains equally (un)likely.
» This independence ensures that learning is based purely on the data

distribution, not temporal correlations.

Large Problems

Key Characteristics of Supervised Training

v

Static dataset = fixed ground-truth targets.

v

Independent samples = no temporal dependencies.

v

Objective = minimize loss over dataset to achieve best approximation of
the target function.

v

The learning process is stable because:

» Targets do not change during training.
» Gradients are computed against fixed labels.

Bootstrapping Q-Values

Introduction to Bootstrapping Q-Values

» Q-learning is a foundational reinforcement learning (RL) algorithm.

» Unlike supervised learning, RL chooses its training examples dynamically
through interaction with the environment.

» The algorithm learns by bootstrapping — updating estimates based
partly on other learned estimates.

» For convergence, every state must eventually be sampled by the

environment?.

2Christopher JCH Watkins. ‘Learning from Delayed Rewards’.

Bootstrapping Q-Values

Challenges of Large State Spaces

» In small environments, it is feasible for all states to be visited repeatedly.
» However, for large or continuous state spaces:
» This condition no longer holds.
» Many states may never be visited.
» Therefore, convergence to the true value function is not guaranteed.
» This motivates the use of function approximation (e.g., deep networks)
in modern RL.

Bootstrapping Q-Values

Structure of the Q-Learning Algorithm?

» As with supervised training, Q-learning consists of a double loop:
1. Quter loop: Controls the number of episodes.
2. Inner loop: lterates through steps within an episode.

» Each episode represents a trajectory from a start state to a terminal state.

def qlearn(environment, alpha=0.001, gamma=0.9, epsilon=0.05):
Q[TERMINAL,_] = 0 # policy

for episode in range(max_episodes):

s = s0

while s not TERMINAL: # perform steps of one full
episode
a = epsilongreedy(Q[s], epsilon)
(r, sp) = environment (s, a)
Qls,al = Q[s,al + alpha*(r+gamma*max(Q[spl)-Q[s,al)
s = sp

return Q

3Christopher JCH Watkins. ‘Learning from Delayed Rewards’.

Bootstrapping Q-Values

Representation and Convergence

v

Q-values are stored in a Python array indexed by (s, a) pairs:

Q[s, 4]

v

Q-function represents the expected return for taking action a in state s.

v

Convergence is assumed to occur when enough episodes have been
sampled.

v

The update rule is bootstrapped from prior estimates:

Q(s,a) « Q(s,a) + afr+ 7 max Q(s',d) — Q(s, a)]

Bootstrapping Q-Values

Off-Policy Learning in Q-Learning

v

Q-learning is an off-policy method.

v

The update target uses the maximum future Q-value, not the value of
the action taken by the current policy.

v

This enables learning the optimal policy while following an exploratory
behavior policy (e.g., e-greedy).

» Hence, even though behavior is stochastic, the learned Q-values reflect an
optimal deterministic policy.

Bootstrapping Q-Values

Differences from Supervised Learning

> In Q-learning:
» Samples are not independent.
» Each next action depends on the current policy.
» Successive states are highly correlated in a trajectory.

» Example:
» If the agent samples a state where a ball is in the upper left corner,
» The next state will likely also be near the upper left corner.
» This temporal correlation violates the i.i.d. assumption of supervised
learning.

Bootstrapping Q-Values

Consequences of Sample Dependence

» Correlated samples can cause:

> Slow learning due to redundant experiences.

» Instability or divergence in training.

» The network may overfit to local regions of the state space.
» To mitigate this, RL uses:

» Exploration strategies (c-greedy, softmax, etc.).
» Experience replay to decorrelate samples.

Bootstrapping Q-Values

Need for Exploration

» Without sufficient exploration:
» The agent may become trapped in local optima.
» It may fail to discover high-reward states.
» Exploration ensures coverage of diverse states, improving Q-value
estimation.
» Common strategies include:

» c-greedy policy: random action with probability €.
» Decaying e: reduces randomness over time.

Bootstrapping Q-Values

Summary of Bootstrapping in Q-Learning

» Q-learning updates are based on bootstrapping previous estimates.
» The process is dynamic: training samples and targets change during
learning.
» Q-learning differs from supervised learning because:
» Samples are temporally correlated.
» Targets depend on current estimates (no static ground truth).
» Learning is off-policy and depends on exploration.
» These factors make convergence difficult, especially for large problems.

DRL Target-Error

Deep Reinforcement Learning Target-Error

v

Deep learning and Q-learning share a striking structural similarity.
Both algorithms consist of a double loop:

» An outer loop over epochs or episodes.
» An inner loop over samples or steps.

v

v

Each iteration minimizes an error or difference between a prediction and a
target.

This similarity raises the question: Can bootstrapping be combined
with loss-function minimization?

v

DRL Target-Error

Combining Bootstrapping and Gradient Descent

» Mnih et al.* demonstrated that the two processes can indeed be
combined.
» The result is Deep Q-Learning (DQN) — a method that merges:
» Bootstrapping from Q-learning, and
» Gradient-based parameter optimization from deep learning.
» The key idea: train a Q-network that approximates Qy(s, a) using
backpropagation.

*Volodymyr Mnih et al. ‘Playing Atari with Deep Reinforcement Learning'.

http://arxiv.org/abs/1312.5602

DRL Target-Error

Naive Deep Learning Version of Q-Learning

» The structure is still a double loop:
1. Outer loop: controls episodes or training iterations.
2. Inner loop: bootstraps Q-values by minimizing a loss function.
» The parameters 6 of the Q-network are updated via stochastic gradient
descent.

DRL Target-Error

Naive Deep Learning Version of Q-Learning

def train_qlearn(environment, Qnet, alpha=0.001, gamma=0.0,
epsilon=0.05

s = s0 # initialize start state
for epoch in range(max_epochs): # an epoch is one pass
sum_sq = 0 # reset to zero for each pass
while s not TERMINAL: # perform steps of one full
episode
a = epsilongreedy(Qnet(s,a)) # net: {[s,al]-values
(r, sp) = environment (a)
output = Qnet.forward_pass(s, a)
target = r + gamma * max (Qnet (sp))
sum_sq += (target - output) **2
s = sp

grad = Qnet.gradient (sum_sq)
Qnet.backward_pass (grad, alpha)
return Qnet # (-values

DRL Target-Error

The Deep Q-Learning Loss Function

» Deep Q-learning minimizes a loss based directly on the Q-learning update
rule.

» The loss at iteration t is:

2
L(0:) = Esars (r +7 m;,]X QGt—1(5,a a,) — Qo. (s, a))]

» This is the squared difference between:

» The new Q-value Qy,(s, a) (forward pass), and
» The old bootstrapped target r + vy maxy Qp,_,(s',a).

DRL Target-Error

Gradient of the Deep Q-Learning Loss

» The gradient for the parameter update is given by:
Vo,Li(01) = Eqanp(ysme | (7 +7max Qo (s'.4) = Qu,(s,2)) Vo, Quy(s.a)]

> Here:
» p: behavior distribution (policy used for exploration)

» &: environment dynamics (e.g., Atari emulator)

» This defines a fixed-point iteration process®.

SFrancisco S Melo and M Isabel Ribeiro. ‘Convergence of Q- Iearnmg with linear function
approximation’. In: 2007 European Control Conference (ECC). IEEE. 2007, pp. 2671-2678.

DRL Target-Error

Moving Targets and Instability

» A crucial distinction from supervised learning:

> In supervised learning, targets are fixed.
> In deep reinforcement learning, targets are moving.

» The target values depend on the previous parameters 6;_1:
Ye = r+ymax Qo ,(s',d)

» Since both prediction and target evolve as learning progresses, the
optimization target moves during training.

DRL Target-Error

Implications of Moving Targets

» Moving targets can lead to:
» Instability: network weights chase a shifting objective.
» Divergence: updates may amplify errors instead of reducing them.
» Non-stationary training signals.
» To mitigate these problems, DQN introduced:
» Target networks — to stabilize the bootstrapped targets.
» Experience replay — to decorrelate samples.
» These innovations made deep reinforcement learning feasible for
large-scale tasks such as Atari games.

DRL Target-Error

Summary: Deep RL Target-Error Concept

> Deep RL integrates:

1. Bootstrapping from temporal-difference learning.
2. Loss minimization through gradient descent.

> The target depends on older network weights, making it a moving target.

» Despite this challenge, stability can be achieved with architectural
innovations (target networks, replay buffers).

> Deep Q-learning thus bridges the gap between tabular Q-learning and
deep neural function approximation.

Three Challenges

Three Core Challenges

» Our naive deep Q-learner faces three fundamental problems:
1. Coverage: The state space is too large to sample fully.
2. Correlation: Subsequent samples are highly correlated.
3. Convergence: The optimization target moves during learning.
» These issues threaten convergence, stability, and generalization of deep
RL agents.

Three Challenges

Challenge 1: Coverage

» Proofs of Q-learning’s convergence rely on a key assumption:
All state-action pairs (s, a) must eventually be sampled.
» This ensures that Q(s, a) converges to the optimal Q*(s, a).
» However, in large or continuous environments:
» Full state coverage is impaossible.
» Many states may never be visited.
» = No theoretical guarantee of convergence to the optimal policy.

Three Challenges

Coverage in Practice

v

Example: Atari game with millions of unique screen states.

Even after millions of steps, the agent may have visited only a fraction.

v

v

Consequently:

» Q-values for unseen states remain inaccurate.
» Policy may fail catastrophically in novel or rare situations.

v

This is a form of out-of-distribution generalization failure.

Three Challenges

Challenge 2: Correlation
> In reinforcement learning, samples are not independent.

» Each state sy, is generated from s; by one action:

St+1 = f(St, 3t)

» Hence, consecutive samples (s¢, at, rt, st+1) are highly correlated.

» This violates the i.i.d. assumption of stochastic gradient descent.

Three Challenges

Consequences of Sample Correlation

» Correlated samples can cause:

» Biased training: updates reflect a narrow part of the state space.
» Local minima: the policy becomes specialized to a small region.
» Feedback loops: policy reinforces its own biases.

» Example:

» A chess agent always plays one opening.
> |t learns strong Q-values only for that opening.
» When the opponent plays a different opening performance collapses.

Three Challenges

The Specialization Trap

» When exploitation dominates exploration:

» The agent repeatedly selects the same actions.
» State trajectories become repetitive.
» The agent gets stuck in a “specialization trap.”

» This worsens both:
» Coverage: fewer distinct states sampled.
» Convergence: biased gradients lead to overfitting.

» The result: poor generalization and unstable learning.

Three Challenges

Challenge 3: Convergence

> In supervised learning:

> Targets y are fixed.

» Loss £(0) = (y — fs(x))? minimizes toward a stable solution.
» In deep reinforcement learning:

» Targets move because they depend on 6;_;.

» Bootstrapped target:

Ye=r-+v mZ{iX ngl (Sl7 a’)
a

Three Challenges

Moving Targets and Instability

» The loss at time t is:
2
L(0:) = <r + ymax Qp,_, (s',a) — Qu,(s, a)>
a

» Both prediction and target depend on parameters being optimized.
» = Risk of:

» Overshooting the target.
» Oscillation or even divergence.

> Gradient descent “chases’ a target that moves with every update.

Three Challenges

Why Convergence is Difficult

» Reinforcement learning optimizes a function that depends on itself:
00(57 a) Rty mgx Q@(Slv a/)
a

» This circular dependency causes:

» Non-stationary targets
» Instability in gradient-based updates

» Considerable research effort has gone into finding algorithms that:

» Break this circular dependency,
» And stabilize learning despite moving targets.

Three Challenges

Summary: The Three Challenges

1. Coverage

Large state spaces prevent full sampling = incomplete Q-values.

2. Correlation

Sequential samples are correlated = biased updates and specialization traps.

3. Convergence

Targets move with parameters = instability and potential divergence.

» Overcoming these challenges led to key innovations: Experience Replay
and Target Networks.

Deadly Triad

The Deadly Triad: Overview

» Combining off-policy learning with nonlinear function approximation
can cause Q-values to diverge.6'7'8
» Three interacting elements make reinforcement learning unstable:

1. Function approximation
2. Bootstrapping
3. Off-policy learning

» Together, they form the Deadly Triad®.

6L eemon Baird. ‘Residual algorithms: Reinforcement learning with function
approximation'. In: Machine Learning Proceedings 1995. Elsevier, 1995, pp. 30-37.

“Geoffrey J Gordon. Approximate solutions to Markov decision processes. Carnegie
Mellon University, 1999.

8John N Tsitsiklis and Benjamin Van Roy. ‘Analysis of temporal-diffference learning with
function approximation’. In: Advances in Neural Information Processing Systems. 1997,
pp. 1075-1081.

°Richard S Sutton and Andrew G Barto. Reinforcement learning, An Introduction,
Second Edition. MIT Press, 2018,

Deadly Triad

Function Approximation

» Function approximators (e.g., neural networks) estimate Q(s, a) using
shared features between states.

» Unlike exact tabular methods, deep networks generalize over state
features:

Q(s,a) = fa(4(s), a)

» Errors in shared features can cause misidentification of states.

» Reward values or Q-values can then be attributed incorrectly to unrelated
states.

Implication

Misassigned values can cause instability or divergence during learning.

Deadly Triad

Bootstrapping

In temporal-difference and Q-learning, current estimates depend on
previous estimates:

v

Q(s,a) « Q(s,a) + afr+ v max Q(s',) — Q(s, a)]

Bootstrapping speeds up training since values need not be computed from
scratch.

v

» However, errors in early estimates can propagate and amplify.

With function approximation, these errors can affect multiple states that
share features.

v

Key Issue
Bootstrapping + Function Approximation = Persistent and spreading errors.

Deadly Triad

Off-Policy Learning

» Off-policy methods (e.g., Q-learning) learn from a behavior policy 7,
that differs from the target policy .

» The learning update uses:
Q" (s,a) =E |r+ymax Q7 (s,)
a/

» The policy used for exploration may not generate data representative of
the optimal policy’s state distribution.

» This can cause poor convergence or divergence, especially when combined
with function approximation.

Observation

Off-policy learning is less stable than on-policy learning, and stability worsens
with nonlinear function approximators.

Deadly Triad

Interaction of the Triad

» Each element of the triad alone can
cause instability.
> Together, they can result in:

» Divergent Q-values
» Oscillatory learning
» Poor convergence

» Example:

function approx.+bootstrapping+off-policy data = divergence

Deadly Triad

lllustration of the deadly triad interaction.

Function
Approximation

shared
features

The
Deadly Triad
O

— propagates :
[Bootstrapping] errors [?_lj;[r):ilrl]cgy]

Risks: Divergence / Oscillations / Instability
Mitigations: Experience Replay, Target Networks, Double Q, On-policy methods

Avoiding the Deadly Triad

> Several techniques have been developed to mitigate instability:

» Stable deep RL became possible with these methods!?.

>

v vy

Experience Replay (reduces correlation)

Target Networks (stabilize bootstrapping)
On-policy algorithms (e.g., SARSA, A3()
Double Q-learning (reduces overestimation bias)

Key Idea

Breaking at least one link in the triad (approximation, bootstrapping, or
off-policy) helps achieve convergence.

Deadly Triad

0Volodymyr Mnih et al. ‘Human-level control through deep reinforcement learning'.

Nature

	Large Problems
	Bootstrapping Q-Values
	DRL Target-Error
	Three Challenges
	Deadly Triad

