CS-866 Deep Reinforcement Learning

Markov Decision Process

Nazar Khan
Department of Computer Science
University of the Punjab

RL in Daily Life Finding a Supermarket

- ► New city, no map, no phone.
- You explore randomly and find a supermarket.
- ► You note the route, and retrace your steps home.
- ▶ Next time:
 - **Exploit:** follow the known route.
 - **Explore:** try new routes, maybe shorter.

RL Concepts in the Supermarket Story

- Agent: you
- ► Environment: the city
- ► States: your location at each step
- ► Actions: move left, right, forward, back
- Trajectories: routes you tried
- ► Policy: rule for choosing next action
- ► Reward/Cost: distance or time taken
- ► Exploration vs. Exploitation: try new vs. repeat old routes
- ► Transition model: your notebook map

RL in Daily Life Supermarket Shopping

- Agent: The shopper.
- ► Environment: Supermarket layout.
- ► **State:** Items already in cart, location in store.
- ► **Actions:** Move to aisle, pick/skip item.
- Reward: Healthy, affordable, and complete shopping basket.

Sequential Decision Problems

- ► RL is used to solve **sequential decision problems**.
- Agent must make a sequence of decisions to maximize overall reward.
- ► Each problem involves:
 - ► **Agent** = solver
 - ► **Environment** = world/problem
- ► Goal: Find the **optimal policy** (sequence of actions).

Example: Grid World

- Simple environment for RL experiments.
- ightharpoonup Start state ightarrow Goal state.
- Actions: Up, Down, Left, Right.
- ► Variations:
 - ► Loss squares (negative reward).
 - ► Wall squares (impenetrable).
- By exploring the grid, taking different actions, and recording the reward, the agent can find a route.
- ► When it has a route, it can try to find a shorter route to the goal.

		end +1
		end -1
start		

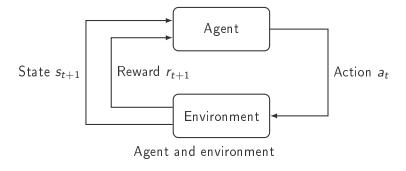
From Grids to Mazes

- Grid worlds are simple.
- Mazes introduce walls and complexity.
- ► Used for path-finding in:
 - ► Robotics trajectory planning
 - ► Al path-finding problems

Box-Pushing Puzzles: Sokoban

- Classic planning + learning benchmark.
- ► Rules:
 - Boxes can only be pushed, not pulled.
 - Wrong moves create dead-ends.
- ► Hardness:
 - Small instances solvable exactly.
 - ► Larger instances are NP-hard/PSPACE-hard.

Agent and Environment

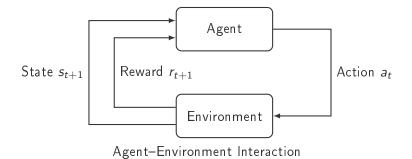


- Agent: Learner/decision maker.
- ► **Environment:** Provides states, rewards, transitions.
- ▶ Agent interacts → learns optimal policy.

Tabular Value-Based RL

- ► Reinforcement learning finds the best **policy** to operate in an environment
- Key idea: Agent interacts with an Environment
- Environment provides feedback for agent's actions
- Feedback can in the form of positive or negative reward.
- Goal: learn a policy that maximizes long-term reward

Agent and Environment



- \triangleright Environment has a state s_t
- ightharpoonup Agent chooses an action a_t
- ▶ Transition: $s_t \rightarrow s_{t+1}$
- ightharpoonup Reward r_{t+1} received
- ▶ Goal: find **optimal policy function** $\pi^*(s)$: $s \to a$ that gives in each state s the best action a to take in that state.

Learning the Policy

- ▶ By trying different actions, agent accumulates rewards
- ► Learns which actions are best for each state
- Environment only provides a number (reward), not instructions
- Advantage: can generate as much experience as needed (no labeled dataset!)
- Optimal policy is learned from repeated interaction with the environment

Markov Decision Processes (MDPs)

- Framework for dealing with sequential decision problems
- ► Next state s_{t+1} depends only on:
 - ► Current state *s*_t
 - Current action a_t
- No dependence on history (Markov property)
- Enables reasoning about future using only present information

Formal Definition of MDP

An MDP is a 5-tuple (S, A, T_a, R_a, γ) :

- ► S is the set of states (environment configurations)
- ► A is the set of actions available
- ▶ $T_a(s, s') = \Pr(s_{t+1} = s' | s_t = s, a_t = a)$ is the probability that action a in state s at time t will transition to state s' at time t + 1 in the environment
- $ightharpoonup R_a(s,s')$ is the reward for transition $s \to s'$ because of action a
- $ightharpoonup \gamma \in [0,1]$ is a *discount* factor representing the distinction between immediate and long-term reward

State S

- ▶ Basis of every MDP: the **state** s_t at time t
- ► State s uniquely represents the configuration of the environment
- Examples:
 - Supermarket: current street corner
 - Chess: full board configuration
 - ► Robotics: joint angles and limb positions
 - ► Atari: all screen pixels

Deterministic vs. Stochastic Environments

- ▶ **Deterministic**: each action leads to exactly one new state
 - Gridworld, Sokoban, Chess
- ► Stochastic: the same action can lead to multiple possible outcomes
 - Robot pours water: success or spillage
 - Outcomes depend on unknown factors in environment

Action A

- ▶ In state s, the agent chooses an action a (based on policy $\pi(a|s)$)
- Action irreversibly changes the environment
- Examples:
 - ► Supermarket: walk East
 - Sokoban: push a box
- Possible actions differ by state (e.g., walls may block moves)

Discrete vs. Continuous Actions

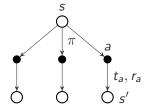
- ▶ Discrete: finite set of actions
 - ► Board games, grid navigation
- Continuous: actions span a range of values
 - Robot arm movements
 - Bet sizes in games
- ► Two types of RL algorithms:
 - Value-based algorithms work well for discrete action spaces
 - Policy-based algorithms work well for both discrete an continuous action spaces

Transition Function T_a

- ▶ Transition function $T_a(s, s')$: defines how states change after action a
- \triangleright Every environment has its own transition function T_a
- Two kinds of RL:
 - ▶ Model-free: agent does not know T_a ; learns by interaction
 - ► Model-based: agent learns its own approximation of the environment's T_a

Graph View of the State Space

- ▶ Dynamics of an MDP are modelled by transition function $T_a(\cdot)$ and reward function $R_a(\cdot)$
- ► The imaginary space of *all possible states* is called the *state space*
- States and actions can be seen as nodes in a transition graph

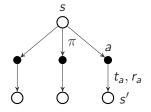


1-level transition graph for an MDP

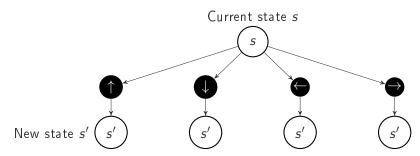
- ▶ Edges represent transitions $s \rightarrow a \rightarrow s'$
- ightharpoonup Reward r_a is associated with each transition t_a

Graph View of the State Space

- ▶ RL is also known as learning by *trial end error*.
- ► *Trial*: moving **down** the tree (selecting actions)
- ► Error: propagating rewards up the tree (learning)

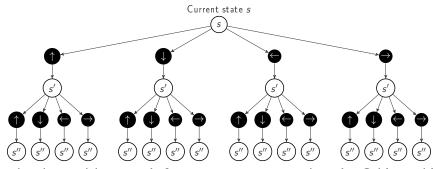


Transition Graph for Grid World



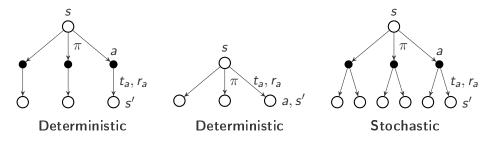
1-level transition graph for an MDP representing the Grid World

Transition Graph for Grid World



2-level transition graph for an MDP representing the Grid World

Stochastic vs. Deterministic State Spaces



Reward R_a

- Reward is a measure of the quality of a state (good or bad outcome)
- ▶ Important: we care about **sequences** of rewards
- ► Return: total cumulative reward of a sequence
- lacktriangle Value function $V^\pi(s)$: expected cumulative reward from s under policy π

Discount Factor γ

- ► Balances present vs. future rewards
- $ightharpoonup \gamma < 1$: future rewards are discounted for *continuous*, never-ending tasks
- $ightharpoonup \gamma=1$: no discounting for episodic tasks that end, e.g., chess
- lacksquare Most RL tasks in this course: episodic, so $\gamma=1$

Policy π

- ▶ Policy π : rule for choosing actions
- $ightharpoonup \pi(a|s)$: probability of taking action a in state s
- Example: tabular stochastic policy (probabilities for each action)
- ▶ Deterministic policy: $\pi(s) \rightarrow a$

Example: Stochastic vs Deterministic Policy

Deterministic Policy

S	$\pi(s)$	
1	down	
2	right	
3	ир	

$$\pi(s) o a$$

Stochastic Policy (table)

	I		ı c.	
S	up	down	left	right
1	0.2	8.0	0.0	0.0
2	0.2 0.0 0.7	0.0	0.0	1.0
3	0.7	0.0	0.3	0.0

$$\pi(a|s) = \text{probability of action } a \text{ in state } s$$