CS-866 Deep Reinforcement Learning

MDP Solutions - I Model-Based Learning

Nazar Khan
Department of Computer Science
University of the Punjab

MDP Solution Methods: Big Picture

- ▶ We now move from *formulation* of MDPs to their *solution*.
- ▶ Goal: find the optimal policy π^* that maximizes expected return.
- Solution methods typically rely on:
 - ► *Recursion*: breaking problems into smaller subproblems.
 - ► Dynamic Programming (DP): systematic recursion + memoization.
 - ► Value Iteration (VI): an iterative DP algorithm to solve Bellman equations.

Recursion Intuition

► The Bellman equation is inherently recursive:

$$V(s) = \max_{a} \mathbb{E}[r + \gamma V(s')]$$

- ► The value of a state depends on the values of its successor states.
- ► Just like recursion in programming: a function calls itself with smaller inputs.
- ► Eventually we reach terminal states, where values are known.

Droste effect: recursion in pictures

Dynamic Programming: Divide and Conquer

- ▶ DP applies recursion systematically across the entire state space.
- ► Principle: divide and conquer.
 - 1. Start from a root state whose value we want.
 - **2.** Recursively compute values of sub-states closer to terminal states.
 - 3. At terminals: rewards are known.
 - 4. Propagate values back up: combine child values into parent values.
 - **5.** Eventually arrive at the root value.
- ► This mirrors recursive algorithms in computer science.

Value Iteration: The Idea

- A basic DP algorithm to compute optimal values.
- Initialize value function V(s) arbitrarily (e.g., random or zeros).
- Repeatedly update values using Bellman optimality equation:

$$V_{k+1}(s) = \max_{a \in A} \left[R(s, a) + \gamma \sum_{s'} T(s, a, s') V_k(s') \right]$$

- Keep iterating until values converge (stop changing much).
- ▶ Once V(s) is known, extract the optimal policy:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Value Iteration Pseudocode

Discussion: Pros and Cons of Value Iteration

Strengths

- Simple, elegant, and guaranteed to converge to the optimal value function.
- ▶ Works with any finite MDP (finite S, A).
- ▶ Provides both $V^*(s)$ and $\pi^*(s)$.

Weaknesses

- ► Computationally expensive:
 - ▶ Triply nested loop over states, actions, and next states.
 - Repeated full sweeps of the state space.
- Convergence can be slow.

OpenAI Gym: Introduction

- ► **Gym** is a Python suite of *environments* for reinforcement learning.
- Created by OpenAl, it has become the de facto standard.
- ► However, OpenAl Gym was discontinued in 2022.
- ► **Gymnasium** is a community maintained fork of OpenAl's Gym library.
- ► Available at https://gymnasium.farama.org/
- Runs on Linux, macOS, and Windows.
- ▶ Large and active community: new environments are continuously added.

OpenAl Gym: Environments

- Gym provides environments from easy to advanced:
 - ► Classic control problems: **CartPole**, **MountainCar**.
 - Small text environments: Taxi.
 - ► Arcade Learning Environment (ALE)¹
 - ► Physics-based robotics: MuJoCo², PyBullet.
- ► You can:
 - Experiment with predefined environments.
 - Create your own environments.
 - ► Test different agent algorithms in a common interface.

¹Volodymyr Mnih et al. 'Playing Atari with deep reinforcement learning'. In: arXiv preprint arXiv:1312.5602 (2013).

²Emanuel Todorov, Tom Erez, and Yuval Tassa. 'MuJoCo: A physics engine for model-based control'. In: *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*. 2012, pp. 5026–5033.

Installing Gymnasium

- Check if Python is installed and up-to-date (3.10 recommended).
- ► Install Gymnasium with pip:

pip install gymnasium

- ▶ Install in the same virtual environment as PyTorch or TensorFlow.
- You may need to install/update additional packages: numpy, scipy, pyglet, etc.
- ► Some environments require **OpenGL** support.

CartPole Environment

CartPole: a classic control benchmark

import gym

Testing the Installation: CartPole

- ▶ A simple test is to run the **CartPole** environment.
- ▶ If successful, a window appears with a pole balancing on a cart.
- ► Random actions should move the cart and make the pole wobble.

```
env = gym.make('CartPole-v0')
env.reset()
for _ in range(1000):
    env.render()
    env.step(env.action_space.sample()) # take a random action
env.close()
```

Taxi Example: Introduction

- ► The **Taxi environment** is a simple Grid World from OpenAl Gym.
- Goal: Taxi must
 - 1. Navigate to the passenger's location.
 - **2.** Pick up the passenger.
 - **3.** Drive to the destination (R, G, B, Y).
 - **4.** Drop off the passenger.
- ► The episode ends after successful drop-off.

Taxi Example: State Space

► The problem has a discrete state space:

25 (taxi positions) \times 5 (passenger states) \times 4 (destinations) = 500

- ► Passenger states:
 - At one of 4 fixed locations (R, G, B, Y).
 - Or already inside the taxi.
- ► Each state fully specifies:
 - Taxi position.
 - ► Passenger location.
 - ► Destination location.

Taxi Example: Action Space

- ► There are six discrete deterministic actions:
 - 1. Move South
 - 2. Move North
 - 3. Move East
 - 4. Move West
 - **5.** Pick up passenger
 - **6.** Drop off passenger
- ► Transitions are deterministic given the current state and action.
- Illegal actions (e.g., pickup/dropoff at wrong location) are handled by rewards.

Taxi Example: Rewards

- Reward structure:
 - ▶ -1 for each time step (encourages faster completion).
 - ► +20 for successfully dropping off the passenger.
 - ightharpoonup -10 penalty for illegal pickup or dropoff.
- ➤ This balance of positive/negative rewards:
 - Encourages efficiency.
 - Prevents random or invalid actions.

Value Iteration for Taxi

- ► Value iteration can be applied to this environment:
 - 1. Initialize V(s) for all states randomly (or zeros).
 - 2. Iteratively update V(s) using the Bellman optimality equation.
 - **3.** Extract greedy policy $\pi(s)$ after convergence.
- OpenAl Gym provides the transition function:
 - The following code queries Gym for the next state instead of hardcoding transitions.

new_policy = np.zeros(env.nS)
for state_id in range(env.nS):

```
import gym
import numpy as np
def iterate_value_function(v_inp, gamma, env):
    ret = np.zeros(env.nS)
    for sid in range (env.nS):
        temp_v = np.zeros(env.nA)
        for action in range(env.nA):
            for (prob, dst_state, reward, is_final) in env.P[
                sidl[action]:
                temp_v[action] += prob*(reward + gamma*v_inp[
                    dst_state]*(not is_final))
        ret[sid] = max(temp_v)
    return ret
def build_greedy_policy(v_inp, gamma, env):
```

```
gamma = 0.9
cum_reward = 0
n_rounds = 500
env.reset()
for t_rounds in range(n_rounds):
    # init env and value function
    observation = env.reset()
```

env = gym.make('Taxi-v3')

```
v = np.zeros(env.nS)
# solve MDP
for _ in range (100):
    v_old = v.copv()
    v = iterate_value_function(v, gamma, env)
    if np.all(v == v_old):
        break
policy = build_greedy_policy(v, gamma, env).astype(np.int)
# apply policy
for t in range (1000):
    action = policy[observation]
    observation, reward, done, info = env.step(action)
    cum_reward += reward
    if done:
        break
if t_{rounds} \% 50 == 0 and t_{rounds} > 0:
```

```
\label{eq:print(cum_reward * 1.0 / (t_rounds + 1))} \\ \text{env.close()}
```

Taxi Example: Hands-On

- Run the provided Taxi value iteration code.
- Experiment with:
 - ightharpoonup Discount factor γ .
 - Convergence threshold.
 - ▶ Initialization of V(s).
- Try to visualize:
 - ▶ How V(s) changes across iterations.
 - ▶ How the policy $\pi(s)$ emerges from the values.
- ▶ This prepares us for more complex planning and learning algorithms.

Next Lecture

- So far: Value Iteration (model-based) computes the policy using the transition model.
- ► Problem: In many environments, the transition probabilities are **unknown**.
- Solution: Use model-free algorithms that learn directly from experience.
- ► Key milestone: Enabled reinforcement learning to work in real-world problems.