
CS-866 Deep Reinforcement Learning

MDP Solutions - I

Model-Based Learning

Nazar Khan
Department of Computer Science

University of the Punjab

Value Iteration OpenAI Gym

MDP Solution Methods: Big Picture

I We now move from formulation of MDPs to their solution.

I Goal: �nd the optimal policy π? that maximizes expected return.

I Solution methods typically rely on:
I Recursion: breaking problems into smaller subproblems.
I Dynamic Programming (DP): systematic recursion + memoization.
I Value Iteration (VI): an iterative DP algorithm to solve Bellman equations.

Value Iteration OpenAI Gym

Recursion Intuition

I The Bellman equation is inherently
recursive:

V (s) = max
a

E[r + γV (s ′)]

I The value of a state depends on the
values of its successor states.

I Just like recursion in programming: a
function calls itself with smaller inputs.

I Eventually we reach terminal states,
where values are known.

Droste e�ect: recursion in pictures

Value Iteration OpenAI Gym

Dynamic Programming: Divide and Conquer

I DP applies recursion systematically across the entire state space.

I Principle: divide and conquer.

1. Start from a root state whose value we want.
2. Recursively compute values of sub-states closer to terminal states.
3. At terminals: rewards are known.
4. Propagate values back up: combine child values into parent values.
5. Eventually arrive at the root value.

I This mirrors recursive algorithms in computer science.

Value Iteration OpenAI Gym

Value Iteration: The Idea

I A basic DP algorithm to compute optimal values.

I Initialize value function V (s) arbitrarily (e.g., random or zeros).

I Repeatedly update values using Bellman optimality equation:

Vk+1(s) = max
a∈A

[
R(s, a) + γ

∑
s′

T (s, a, s ′)Vk(s
′)
]

I Keep iterating until values converge (stop changing much).

I Once V (s) is known, extract the optimal policy:

π?(s) = argmax
a

Q?(s, a)

Value Iteration OpenAI Gym

Value Iteration Pseudocode

1 def value_iteration ():

2 initialize(V)

3 while not convergence(V):

4 for s in range(S):

5 for a in range(A):

6 for s` in range(S):

7 Q[s,a] = Q[s,a] + T_a(s,s`)(R_a(s,s`) +

gamma * V[s`])

8 V[s] = max_a(Q[s,a])

9 return V

Value Iteration OpenAI Gym

Discussion: Pros and Cons of Value Iteration

Strengths

I Simple, elegant, and guaranteed to converge to the optimal value
function.

I Works with any �nite MDP (�nite S , A).

I Provides both V ?(s) and π?(s).

Weaknesses

I Computationally expensive:
I Triply nested loop over states, actions, and next states.
I Repeated full sweeps of the state space.

I Convergence can be slow.

Value Iteration OpenAI Gym

OpenAI Gym: Introduction

I Gym is a Python suite of environments for reinforcement learning.

I Created by OpenAI, it has become the de facto standard.

I However, OpenAI Gym was discontinued in 2022.

I Gymnasium is a community maintained fork of OpenAI's Gym library.

I Available at https://gymnasium.farama.org/

I Runs on Linux, macOS, and Windows.

I Large and active community: new environments are continuously added.

https://gymnasium.farama.org/

Value Iteration OpenAI Gym

OpenAI Gym: Environments

I Gym provides environments from easy to advanced:
I Classic control problems: CartPole, MountainCar.
I Small text environments: Taxi.
I Arcade Learning Environment (ALE)1

I Physics-based robotics: MuJoCo2, PyBullet.

I You can:
I Experiment with prede�ned environments.
I Create your own environments.
I Test di�erent agent algorithms in a common interface.

1Volodymyr Mnih et al. `Playing Atari with deep reinforcement learning'. In: arXiv
preprint arXiv:1312.5602 (2013).

2Emanuel Todorov, Tom Erez, and Yuval Tassa. `MuJoCo: A physics engine for
model-based control'. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2012, pp. 5026�5033.

Value Iteration OpenAI Gym

Installing Gymnasium

I Check if Python is installed and up-to-date (3.10 recommended).

I Install Gymnasium with pip:

pip install gymnasium

I Install in the same virtual environment as PyTorch or TensorFlow.

I You may need to install/update additional packages: numpy, scipy,
pyglet, etc.

I Some environments require OpenGL support.

Value Iteration OpenAI Gym

CartPole Environment

CartPole: a classic control benchmark

Value Iteration OpenAI Gym

Testing the Installation: CartPole

I A simple test is to run the CartPole environment.

I If successful, a window appears with a pole balancing on a cart.

I Random actions should move the cart and make the pole wobble.

1 import gym

2
3 env = gym.make('CartPole -v0')

4 env.reset ()

5 for _ in range (1000):

6 env.render ()

7 env.step(env.action_space.sample ()) # take a random action

8 env.close ()

Value Iteration OpenAI Gym

Taxi Example: Introduction

I The Taxi environment is a simple Grid World from OpenAI Gym.
I Goal: Taxi must

1. Navigate to the passenger's location.
2. Pick up the passenger.
3. Drive to the destination (R, G, B, Y).
4. Drop o� the passenger.

I The episode ends after successful drop-o�.

Value Iteration OpenAI Gym

Taxi Example: State Space

I The problem has a discrete state space:

25 (taxi positions)× 5 (passenger states)× 4 (destinations) = 500

I Passenger states:
I At one of 4 �xed locations (R, G, B, Y).
I Or already inside the taxi.

I Each state fully speci�es:
I Taxi position.
I Passenger location.
I Destination location.

Value Iteration OpenAI Gym

Taxi Example: Action Space

I There are six discrete deterministic actions:

1. Move South
2. Move North
3. Move East
4. Move West
5. Pick up passenger
6. Drop o� passenger

I Transitions are deterministic given the current state and action.

I Illegal actions (e.g., pickup/dropo� at wrong location) are handled by
rewards.

Value Iteration OpenAI Gym

Taxi Example: Rewards

I Reward structure:
I −1 for each time step (encourages faster completion).
I +20 for successfully dropping o� the passenger.
I −10 penalty for illegal pickup or dropo�.

I This balance of positive/negative rewards:
I Encourages e�ciency.
I Prevents random or invalid actions.

Value Iteration OpenAI Gym

Value Iteration for Taxi

I Value iteration can be applied to this environment:

1. Initialize V (s) for all states randomly (or zeros).
2. Iteratively update V (s) using the Bellman optimality equation.
3. Extract greedy policy π(s) after convergence.

I OpenAI Gym provides the transition function:
I The following code queries Gym for the next state instead of hardcoding

transitions.

Value Iteration OpenAI Gym

Value Iteration in Gym: Taxi Environment

1 import gym

2 import numpy as np

3
4 def iterate_value_function(v_inp , gamma , env):

5 ret = np.zeros(env.nS)

6 for sid in range(env.nS):

7 temp_v = np.zeros(env.nA)

8 for action in range(env.nA):

9 for (prob , dst_state , reward , is_final) in env.P[

sid][action]:

10 temp_v[action] += prob*(reward + gamma*v_inp[

dst_state]*(not is_final))

11 ret[sid] = max(temp_v)

12 return ret

13
14 def build_greedy_policy(v_inp , gamma , env):

15 new_policy = np.zeros(env.nS)

16 for state_id in range(env.nS):

Value Iteration OpenAI Gym

Value Iteration in Gym: Taxi Environment

17 profits = np.zeros(env.nA)

18 for action in range(env.nA):

19 for (prob , dst_state , reward , is_final) in env.P[

state_id][action]:

20 profits[action] += prob*(reward + gamma*v[

dst_state])

21 new_policy[state_id] = np.argmax(profits)

22 return new_policy

23
24
25 env = gym.make('Taxi -v3')

26 gamma = 0.9

27 cum_reward = 0

28 n_rounds = 500

29 env.reset ()

30 for t_rounds in range(n_rounds):

31 # init env and value function

32 observation = env.reset()

Value Iteration OpenAI Gym

Value Iteration in Gym: Taxi Environment

33 v = np.zeros(env.nS)

34
35 # solve MDP

36 for _ in range (100):

37 v_old = v.copy()

38 v = iterate_value_function(v, gamma , env)

39 if np.all(v == v_old):

40 break

41 policy = build_greedy_policy(v, gamma , env).astype(np.int)

42
43 # apply policy

44 for t in range (1000):

45 action = policy[observation]

46 observation , reward , done , info = env.step(action)

47 cum_reward += reward

48 if done:

49 break

50 if t_rounds % 50 == 0 and t_rounds > 0:

Value Iteration OpenAI Gym

Value Iteration in Gym: Taxi Environment

51 print(cum_reward * 1.0 / (t_rounds + 1))

52 env.close ()

Value Iteration OpenAI Gym

Taxi Example: Hands-On

I Run the provided Taxi value iteration code.

I Experiment with:
I Discount factor γ.
I Convergence threshold.
I Initialization of V (s).

I Try to visualize:
I How V (s) changes across iterations.
I How the policy π(s) emerges from the values.

I This prepares us for more complex planning and learning algorithms.

Value Iteration OpenAI Gym

Next Lecture

I So far: Value Iteration (model-based) computes the policy using the
transition model.

I Problem: In many environments, the transition probabilities are unknown.

I Solution: Use model-free algorithms that learn directly from experience.

I Key milestone: Enabled reinforcement learning to work in real-world
problems.

	Value Iteration
	OpenAI Gym

