
CS-866 Deep Reinforcement Learning

MDP Solutions - II
Model-Free Learning

Nazar Khan
Department of Computer Science

University of the Punjab



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Model-Free Learning: Motivation

I So far: Value Iteration (model-based) computes the policy using the
transition model.

I Problem: In many environments, the transition probabilities are unknown.

I Solution: Use model-free algorithms that learn directly from experience.

I Key milestone: Enabled reinforcement learning to work in real-world
problems.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Model-Free Learning: Overview

I Focus: value-based model-free algorithms.

I Instead of knowing the transition model:
I The agent interacts with the environment.
I Learns from sampled rewards and state transitions.

I Goal: Learn an optimal policy π∗ without knowing transition dynamics.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Tabular Value-Based Approaches

Name Approach

Value Iteration Model-based enumeration12

SARSA On-policy temporal di�erence model-free3

Q-learning O�-policy temporal di�erence model-free4

1Richard Bellman. Dynamic Programming. Courier Corporation, 1957, 2013.
2Ethem Alpaydin. Introduction to Machine Learning. MIT press, 2009.
3Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist

systems. Tech. rep. University of Cambridge, Department of Engineering Cambridge, UK,
1994.

4Christopher JCH Watkins. `Learning from Delayed Rewards'. PhD thesis. King's
College, Cambridge, 1989.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Principles of Model-Free Learning (1/3)

Principle 1: Reward Sampling

I Estimate value functions by sampling rewards from the environment.

I Two main strategies:

1. Monte Carlo sampling: update after full-episode return.
2. Temporal Di�erence (TD) learning: update after single-step.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Principles of Model-Free Learning (2/3)

Principle 2: Action Selection

I How does the agent decide which action to take?

I Trade-o�:
I Exploration: try new actions to discover rewards.
I Exploitation: choose best known action to maximize reward.

I Examples:

1. Greedy: a∗ = argmaxa Q(s, a). Never explores.
2. ε-greedy: with probability ε, pick random action, otherwise pick greedily.
3. Softmax: pick action according to its probability.

p(a|s) = eQ(s,a)/τ∑
a′∈A e

Q(s,a′)/τ



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Principles of Model-Free Learning (3/3)

Principle 3: Learning from Rewards

I Two ways of using reward feedback:

1. On-policy learning: Learn about the policy you are following (e.g.,
SARSA).

2. O�-policy learning: Learn about a di�erent (greedy) policy while
following another (e.g., Q-learning).

I Leads to powerful learning algorithms that do not need full transition
models.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Principle 1: Reward Sampling



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Monte Carlo Sampling: Intuition

I Idea: Learn from complete episodes.

I Generate a random episode by interacting with the environment.

I Use its return to update the value function at the visited states.

I Named Monte Carlo after the famous casino, due to random sampling.

Two Loops in Monte Carlo Learning

1. Loop over time steps of the episode.

2. Loop over many episodes until values converge.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Monte Carlo Sampling
Pseudocode

1. Initialization: Start with arbitrary Q(s, a) values.
2. Episode loop: Generate many episodes.
3. Within each episode:

I Collect (s, a, r) tuples until terminal state.

4. Return calculation: Work backwards to compute Gt for each time step
t ∈ {T ,T − 1, . . . , 1, 0}.

Gt = rt + γrt+1 + γ2rt+2 + · · ·
5. Update rule:

Q(st , at)← Q(st , at) + α
(
Gt − Q(st , at)

)︸ ︷︷ ︸
Monte Carlo Error

Note

Uses incremental implementation, suitable for non-stationary environ-
ments.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Monte Carlo Sampling: Illustration

s0 s1 s2 · · · sT
a0, r0 a1, r1 a2, r2 aT−1, rT−1

Gt = rt + γrt+1 + γ2rt+2 + · · ·

Key Idea

At the end of the episode, compute Gt for each state st visited and use it
to update the value function.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Monte Carlo Sampling: Code Structure

1 def monte_carlo(n_samples , ep_length , alpha , gamma):

2 # 0: initialize

3 t = 0; total_t = 0

4 Qsa = []

5
6 # sample n_times

7 while total_t < n_samples:

8
9 # 1: generate a full episode

10 s = env.reset ()

11 s_ep = []

12 a_ep = []

13 r_ep = []

14 for t in range(ep_length):

15 a = select_action(s, Qsa)

16 s_next , r, done = env.step(a)

17 s_ep.append(s)

18 a_ep.append(a)



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Monte Carlo Sampling: Code Structure

19 r_ep.append(r)

20
21 total_t += 1

22 if done or total_t >= n_times:

23 break;

24 s = s_next

25
26 # 2: update Q function with a full episode (incremental

27 # implementation)

28 g = 0.0

29 for t in reversed(range(len(a_ep))):

30 s = s_ep[t]; a = a_ep[t]

31 g = r_ep[t] + gamma * g

32 Qsa[s,a] = Qsa[s,a] + alpha * (g - Qsa[s,a])

33
34 return Qsa

35
36 def select_action(s, Qsa):



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Monte Carlo Sampling: Code Structure

37
38 # policy is egreedy

39 epsilon = 0.1

40 if np.random.rand() < epsilon:

41 a = np.random.randint(low=0,high=env.n_actions)

42 else:

43 a = argmax(Qsa[s])

44 return a

45
46 env = gym.make('Taxi -v3')

47 monte_carlo(n_samples =10000 , ep_length =100, alpha =0.1, gamma

=0.99)



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Monte Carlo Sampling: Pros and Cons

Advantages

I Conceptually simple.

I Works without knowing
transitions.

I Easy to implement.

Disadvantages

I Must wait until end of episode
to update values.

I Ine�cient in long episodes.

I High variance in estimates.

Motivation for Next Step

Leads to Temporal Di�erence (TD) learning, which updates values after
each step by bootstrapping.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Temporal Di�erence (TD) Learning
Bootstrapping and Model-Free Updates

I Recall: In Value Iteration, Bellman's equation computes values
recursively using successor states.

I In model-free RL, we don't have the transition model T (s, a, s ′).

I But we can still re�ne estimates step by step from sampled experience.

I This is called bootstrapping: re�ne old estimates with new updates.

Idea

Use the di�erence between successive time steps to update the current value
estimate.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Bootstrapping Explained

I �Pull yourself up by your bootstraps� → re�ne estimates iteratively.

I Bellman recursion is itself a form of bootstrapping.
I The value of a state depends on the values of its successor states.

V (s) = max
a

E[r + γV (s ′)]

I Model-based RL: compute expectation E using transition probabilities.

I Model-free RL: use sample transitions (s, r , s ′) instead of knowing
transition probabilities.

Key Question

How can we compute the value of a state using only sampled transitions?



Reward Sampling Action Selection Learning from Rewards Hands-On Example

TD Learning Update Rule
From Sutton, 1988

V (st) ← V (st) + α
[
rt+1 + γV (st+1)− V (st)︸ ︷︷ ︸

temporal di�erence error δ

]
Interpretation

I V (st) predicts future reward from now.

I V (st+1) predicts future reward from the next time step.

I rt+1 + γV (st+1) represents a one-step lookahead estimate of the total
return from st .

I δ = rt+1 + γV (st+1)− V (st) is the di�erence between the estimate after
looking one-step ahead and the estimate now.

I TD Learning updates current estimate by adding the (scaled) temporal

di�erence error.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Alternative Formulation of TD Learning

V (st) ← α
[
rt+1 + γV (st+1)

]
+ (1− α)V (st)

I Weighted average between:
I V (st): current estimate of future reward
I rt+1 + γV (st+1): new estimate of future reward after looking one-step into

the future.

I No transition model needed ⇒ model-free!



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Implementation

Learning takes place on Q, not V

While the TD update equation is theoretically introduced in terms of V , in
learning implementations, it's applied to Q.

I Leads to two di�erent TD Learning implementations.

1. SARSA (On-policy learning)

Q(st , at) ← Q(st , at) + α
[
rt+1 + γ Q(st+1, at+1)︸ ︷︷ ︸

reward under π

−Q(st , at)
]

2. Q-Learning (O�-policy learning)

Q(st , at) ← Q(st , at) + α
[
rt+1 + γmax

a′
Q(st+1, a

′)︸ ︷︷ ︸
reward under π∗

−Q(st , at)
]



Reward Sampling Action Selection Learning from Rewards Hands-On Example

SARSA

1 # Temporal Difference SARSA

2 Q = np.zeros ((n_states , n_actions))

3
4 for episode in range(n_episodes):

5 s = env.reset ()

6 a = epsilon_greedy(Q, s, epsilon)

7 done = False

8
9 while not done:

10 s_next , r, done , _ = env.step(a)

11 a_next = epsilon_greedy(Q, s_next , epsilon)

12
13 # TD update (SARSA)

14 Q[s,a] = Q[s,a] + alpha * (

15 r + gamma * Q[s_next , a_next] - Q[s,a]

16 )

17
18 s, a = s_next , a_next



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Q-learning

1 # Temporal Difference Q-learning

2 Q = np.zeros ((n_states , n_actions))

3
4 for episode in range(n_episodes):

5 s = env.reset ()

6 done = False

7
8 while not done:

9 a = epsilon_greedy(Q, s, epsilon)

10 s_next , r, done , _ = env.step(a)

11
12 # TD update (Q-learning)

13 Q[s,a] = Q[s,a] + alpha * (

14 r + gamma * np.max(Q[s_next ,:]) - Q[s,a]

15 )

16
17 s = s_next



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Advantages and Impact

I TD combines ideas of Monte Carlo (sample-based) and Dynamic
Programming (bootstrapping).

I More e�cient than full-episode Monte Carlo: updates can occur at each
time step.

I Enabled model-free learning in complex domains.

Famous Application

TD-Gammona beat world champions in Backgammon using TD learning.

aGerald Tesauro. `Temporal di�erence learning and TD-Gammon'. In:
Communications of the ACM 38.3 (1995), pp. 58�68.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Bias�Variance Trade-o�
Monte Carlo vs. Temporal Di�erence

I Key di�erence between Monte Carlo (MC) and Temporal Di�erence
(TD):

I MC: no bootstrapping
I TD: uses bootstrapping

I Bootstrapping introduces a trade-o� between bias and variance.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Monte Carlo Characteristics

I MC waits until the end of an episode to update values.

I Uses many random action choices → updates are unbiased.

I Randomness across full episodes → high variance in returns.

Monte Carlo

Low Bias / High Variance



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Temporal Di�erence Characteristics

I TD updates the value function after every step.

I Old values are reused in updates → bias is introduced.

I But because updates are incremental, variance is lower.

Temporal Di�erence

High Bias / Low Variance



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Bias�Variance Illustrated
The Dartboard Analogy

I High bias → shots far from target center.

I High variance → shots spread out.

I Goal: balance accuracy (low bias) and consistency (low variance).



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Finding Middle Ground: N-step Methods

I Can we combine the best of MC and TD?

I Idea: use n-step returns.
I Not a full episode (like MC).
I Not just one step (like TD).
I Instead: update after n steps.

I Results in medium bias and medium variance.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

MC, TD, and N-step Compared

I Monte Carlo → full-episode updates.
I TD → single-step bootstrapping.
I n-step → compromise: updates after n steps.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Finding a Policy from Value Functions
Value-based Learning

I Goal of reinforcement learning: construct a policy π with the highest
cumulative reward.

I In the value-based approach, we use V (s) or Q(s, a) to guide action
selection.

I In discrete action spaces:
I At least one action has the highest value.
I That action becomes the best choice in the policy.

Optimal Policy

π? = max
π

V π(s) = max
a,π

Qπ(s, a)

a? = argmax
a∈A

Q?(s, a)



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Value-based Policy Extraction

I The optimal policy sequence π?(s) is recovered by:

1. Learning Q?(s, a) or V ?(s).
2. Selecting a? = argmaxa Q

?(s, a) at each state.

I This is why methods are called value-based: the policy comes from
values.

Key Idea

Value function −→ Best actions −→ Policy



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Principle 2: Action Selection



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Exploration in Model-free RL

I In model-free settings, no transition model T is available.

I Agents must sample the environment directly.

I Sampling is often expensive (e.g., real-world robot actions).

I Hence, smart action selection is needed to:
I Avoid wasting samples.
I Find good policies faster.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Greedy Action Selection

I Idea: always select the action with the current highest Q-value.

I Pros: exploits current knowledge.

I Cons:
I Short-sighted: may converge to local maxima.
I High bias: based on few samples.
I Risk of circular reinforcement: policy only reinforces what it already does.

Problem

A purely greedy agent may miss better long-term strategies.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Exploration vs. Exploitation

I To avoid local maxima, agents must sometimes try less-known actions.

I This introduces the exploration�exploitation trade-o�:
I Exploitation: use current best policy (max Q-values).
I Exploration: try random actions to gather new information.

I Smart policies mix both to balance:
I Learning speed.
I Policy quality.

Preview

The ε-greedy strategy is one common way to achieve this balance.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Bandit Theory: The Exploration/Exploitation Trade-o�

I Fundamental question:
I How to obtain the most reliable information at the least cost?

I Studied extensively in literature for single-step decision problems
I Known as the multi-armed bandit problem.

I A bandit ⇒ casino slot machine with many arms
I Each arm has an unknown payout probability
I Each trial costs a coin
I Goal: Find strategy to identify the best arm with minimal cost



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Bandit Theory as Reinforcement Learning

I Multi-armed bandit is:
I A single-state, single-decision RL problem
I A one-step, non-sequential decision-making problem

I Actions ⇒ arms of the bandit

I Simpli�ed model ⇒ allows in-depth study of exploration vs. exploitation



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Bandit Applications: Clinical Trials

I Example: Testing new drugs in clinical trials

I Bandit ⇒ the trial setup

I Arms ⇒ choice of assigning subjects to:
I Experimental drug
I Placebo

I Serious implication: human lives at stake



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Fixed vs. Adaptive Trials

Fixed Randomized Controlled Trial

I Group sizes �xed in advance

I Duration and con�dence interval
�xed

I Risk: More people exposed to
harmful drug or deprived of
bene�cial drug

Adaptive Trial (Bandit Setup)

I Group sizes adapt during trial

I More subjects get promising drug

I Fewer subjects get
ine�ective/harmful drug



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Adaptive Clinical Trial Illustration

Figure: Adaptive trial: balancing exploration vs. exploitation5

5Abhishek. Multi-Arm Bandits: a potential alternative to A/B tests
https: // medium. com/ brillio-data-science/ multi-arm-bandits-a-potential-

alternative-to-a-b-tests-a647d9bf2a7e . 2019.

https://medium.com/brillio-data-science/multi-arm-bandits-a-potential-alternative-to-a-b-tests-a647d9bf2a7e
https://medium.com/brillio-data-science/multi-arm-bandits-a-potential-alternative-to-a-b-tests-a647d9bf2a7e


Reward Sampling Action Selection Learning from Rewards Hands-On Example

ε-Greedy Exploration

I Simple pragmatic strategy:
I Choose greedy action (highest estimated value) most of the time
I With probability ε, explore another random action

I Example: ε = 0.1
I 90% exploit best-known action
I 10% explore random actions

I ε-greedy is a soft policy: non-zero probability for all actions



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Exploration/Exploitation Trade-o�

I Central concept in reinforcement learning

I Determines:
I How much con�dence in outcomes
I How quickly variance is reduced

I Variants:
I Adaptive ε: decay over time or based on statistics
I Add Dirichlet noise6 to prior probabilities of actions for exploration
I Use Thompson sampling7 for Bayesian exploration

6Samuel Kotz, Narayanaswamy Balakrishnan, and Norman L Johnson. Continuous
Multivariate Distributions, Volume 1: Models and Applications. John Wiley & Sons, 2004.

7Daniel Russo et al. `A tutorial on Thompson sampling'. In: Found. Trends Mach.
Learn. 11.1 (2018), pp. 1�96.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Principle 3: Learning from Rewards



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Learning Methods in Reinforcement Learning

I Beyond action selection, a key design question is:
I Which learning method to use?

I RL is about learning an action-policy from rewards

I Two main approaches:

1. On-policy learning
2. O�-policy learning



Reward Sampling Action Selection Learning from Rewards Hands-On Example

On-policy Learning

I Agent selects an action using the current policy

I The value of that chosen action is used to update the policy

I Learning is tied directly to the behavior of the policy

Key Idea

Update policy values using the action actually taken.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

O�-policy Learning

I Learning uses values of another action, not necessarily the chosen one

I Makes sense during exploration:
I Behavior policy may select a non-optimal action
I On-policy learning would back up its inferior value
I O�-policy learning instead backs up the best action's value

I Advantage:
I Avoids �polluting� the policy with bad exploratory actions



Reward Sampling Action Selection Learning from Rewards Hands-On Example

On-Policy SARSA

Idea

I On-policy algorithm: learns from the action actually taken.

I Uses the same policy for both:
I Action selection (behavior policy)
I Target updates (learning policy)

I Typical choice: ε-greedy exploration.

SARSA Update Rule

Q(st , at)← Q(st , at) + α
[
rt+1 + γQ(st+1, at+1)− Q(st , at)

]
I Uses the next action at+1 chosen by the current policy.
I Predictive: learns directly from behavior values.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

SARSA Intuition

I Agent follows its policy π (possibly ε-greedy).

I Updates Q-values using the same action it just took.

I Policy gradually improves while respecting its own exploration.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

O�-Policy Q-Learning

Idea

I O�-policy algorithm: learns as if it always followed a greedy policy.

I Behavior policy may explore, but updates are from the best possible

action.

Q-Learning Update Rule

Q(st , at)← Q(st , at) + α
[
rt+1 + γmax

a
Q(st+1, a)− Q(st , at)

]

I Uses maxa Q(st+1, a) instead of Q(st+1, at+1).

I Learns from greedy action, not the exploratory one.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Q-Learning Intuition

I Behavior policy may try exploratory actions.

I But updates pretend the agent acted greedily.

I Leads to convergence to the optimal policy.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

SARSA vs. Q-Learning

SARSA (On-policy)

I Learns values of current
behavior.

I More stable (lower variance).

I May converge to sub-optimal
policy if ε is �xed.

Q-Learning (O�-policy)

I Learns values of greedy policy.

I Converges to optimal Q? (low
bias).

I Can be unstable with function
approximation (max operator).



Reward Sampling Action Selection Learning from Rewards Hands-On Example

On-policy vs. O�-policy (Summary)

On-policy O�-policy

Updates from the action
actually taken

Updates from the best

action

Tied to behavior policy Separate behavior + tar-
get policy

Exploration actions may
lower value estimates

More e�cient during ex-
ploration

SARSA8 Q-learning

8Name from the update tuple (s, a, r , s ′, a′)



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Convergence Behavior

I Proven convergence in tabular RL when policy is:
I Greedy in the limit with in�nite exploration (GLIE)

I O�-policy methods:
I Learn from greedy rewards
I ⇒ Converge to optimal policy after enough samples

I On-policy methods:
I With �xed ε, never fully converge (keep exploring)
I With decaying ε→ 0, do converge to greedy policy



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Sparse vs Dense Rewards

I Dense reward: Every state has a reward.
I Example: supermarket (cost per step → negative reward).

I Sparse reward: Rewards only at special states.
I Example: chess (only win/draw/loss at terminal positions).



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Challenges of Sparse Rewards

I Harder to �nd good policies.

I Reward landscape: �at with rare sharp peaks.

I Gradient often zero ⇒ optimization di�cult.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Reward Shaping

I Modify reward function → easier optimization.

I Encodes heuristic knowledge into MDP.

I Common in board games (heuristics in chess, checkers).

I Classic reference: Ng et al. (1999)9.

9Andrew Y Ng, Daishi Harada, and Stuart Russell. `Policy invariance under reward
transformations: Theory and application to reward shaping'. In: International Conference
on Machine Learning. Vol. 99. 1999, pp. 278�287.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Hands-On: Q-Learning on Taxi



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Hands-On: Q-learning on Taxi

I Value Iteration: works if transition model is known.

I Q-learning: model-free; learns by sampling.

I Stores rewards in a Q-table, approximating Q(s, a).

I Once best actions are known for all states → optimal policy.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Taxi Environment Setup

I Grid world: 5× 5 = 25 locations.
I State space size:

25 (taxi positions)× 5 (passenger states)× 4 (destinations) = 500
I Actions: up, down, left, right, pick-up, drop-o�.
I Rewards (Gym Taxi):

I +20: successful drop-o�.
I −1: each time step.
I −10: illegal drop-o�.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Q-learning Intuition

I Goal: learn a policy π(s) maximizing cumulative reward.

I Q-values = expected rewards for (s, a).

I Stored in array Q(s, a), updated with experience.

I Use ε-greedy policy:
I Best action most of the time.
I Random action occasionally (exploration).



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Q-learning Update Rule

Q(st , at)← Q(st , at) + α
[
rt+1 + γmax

a
Q(st+1, a)− Q(st , at)

]
I α: learning rate (0 < α ≤ 1).

I γ: discount factor (0 ≤ γ ≤ 1).

I Bootstrapping: update current Q using next state's Q.

I Q-table initialized randomly; values converge over time.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Q-learning Implementation

1 # Q learning for OpenAI Gym Taxi environment

2 import gymnasium as gym

3 import numpy as np

4 import random

5 #Environment Setup

6 env = gym.make("Taxi -v2")

7 env.reset ()

8 env.render ()

9 # Q[state ,action] table implementation

10 Q = np.zeros ([env.observation_space.n, env.action_space.n])

11 gamma = 0.7 # discount factor

12 alpha = 0.2 # learning rate

13 epsilon = 0.1 # epsilon greedy

14 for episode in range (1000):

15 done = False

16 total_reward = 0

17 state = env.reset ()

18 while not done:



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Q-learning Implementation

19 if random.uniform(0, 1) < epsilon:

20 action = env.action_space.sample () # Explore state

space

21 else:

22 action = np.argmax(Q[state ]) # Exploit learned

values

23 next_state , reward , done , info = env.step(action) #

invoke Gym

24 next_max = np.max(Q[next_state ])

25 old_value = Q[state ,action]

26
27 new_value = old_value + alpha * (reward + gamma *

next_max - old_value)

28
29 Q[state ,action] = new_value

30 total_reward += reward

31 state = next_state

32 if episode % 100 == 0:



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Q-learning Implementation

33 print("Episode {} Total Reward: {}".format(episode ,

total_reward))



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Algorithm Summary

1. Initialize Q-table randomly.

2. Choose initial state s.

3. Select action a from s:
I Greedy or ε-random.

4. Execute a, observe r , s ′, update Q.

5. Repeat until terminal state.

6. Continue until Q-table converges.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Evaluating the Learned Policy

1 total_epochs , total_penalties = 0, 0

2 ep = 100

3 for _ in range(ep):

4 state = env.reset ()

5 epochs , penalties , reward = 0, 0, 0

6 done = False

7 while not done:

8 action = np.argmax(Q[state ])

9 state , reward , done , info = env.step(action)

10 if reward == -10:

11 penalties += 1

12 epochs += 1

13 total_penalties += penalties

14 total_epochs += epochs

15 print(f"Results after {ep} episodes:")

16 print(f"Average timesteps per episode: {total_epochs / ep}")

17 print(f"Average penalties per episode: {total_penalties / ep}")



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Tuning Hyperparameters

I Exploration ε: balance between exploration/exploitation.

I Discount γ: close to 1 for long-term reward.

I Learning rate α: small values stabilize learning.

I Warning: high α can cause divergence.

Tip: Start with γ ≈ 0.9, α ≈ 0.1, ε ≈ 0.1.



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Takeaways

I Q-learning is model-free and e�ective in discrete problems.

I Builds Q-table of expected rewards → optimal policy.

I Taxi world: small, fast, builds intuition.

I Key to mastery: experiment with hyperparameters!



Reward Sampling Action Selection Learning from Rewards Hands-On Example

Summary

I Value functions can be learned without a transition model, by sampling
the environment.

I Model-free methods:
I Use irreversible actions.
I Sample states and rewards using exploration/exploitation trade-o�.
I Apply backup rules with bootstrapping.

I On-policy (SARSA): follows the chosen behavior policy, including
explorative actions.

I O�-policy (Q-learning): always follows the value of the best action.

I Both use tabular representations of the value function.

Next: Function approximation with deep neural networks for high-dimensional
state spaces.


	Reward Sampling
	MC Sampling
	TD Learning
	Bias-Variance Trade-off
	Value-based Learning

	Action Selection
	Bandit Theory
	-Greedy Exploration

	Learning from Rewards
	Sparse Rewards and Reward Shaping

	Hands-On Example

