CS-866 Deep Reinforcement Learning

Policy-Based Learning

Nazar Khan
Department of Computer Science
University of the Punjab

ontinuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Motivation: Continuous Action Spaces

- ▶ Deep RL has major successes in **continuous action spaces**:
 - Robotics (e.g., robot arms)
 - ► Self-driving cars
 - ► Real-time strategy games
- These environments require actions over continuous ranges, not discrete sets.

ontinuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Examples of Continuous Action Spaces

- Robotics control:Joint angles, torque, or velocity.
- Self-driving cars:Steering, acceleration, braking.
- Drone flight: Continuous pitch, roll, yaw, thrust.
- Industrial control:
 Adjusting temperature or flow rate.

- ► Finance:

 Portfolio weights as continuous allocations.
- Healthcare: Continuous dosage control (e.g., insulin).
- ► Gaming and simulation: Throttle, aim, camera rotation.
- ► Locomotion: Walking, running, or balancing

iontinuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Limitation of Value-Based Methods

- ► Value-based RL (e.g., Q-learning, DQN):
 - **1.** Learns Q(s, a) for all actions.
 - **2.** Selects best action via arg $\max_a Q(s, a)$.
- Works well for discrete actions.
- ► In continuous spaces:
 - arg max is hard to compute.
 - Learning becomes unstable.
- Need a method that handles continuous actions directly.

Policy-Based Methods: The Direct Approach

- ► Skip value estimation learn the **policy directly**.
- Policy-based methods represent:

$$\pi_{\theta}(a|s) = P(a|s;\theta)$$

- Model will directly output action probability.
- ▶ Improve parameters θ using **gradient ascent**.
- ► Learn by playing episodes and improving the policy each time.

ontinuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Why Policy-Based Methods?

Advantages:

- Work naturally with continuous actions.
- Produce stochastic policies (smooth exploration).
- ► Applicable to more domains than value-based methods.
- Integrate well with gradient-based deep learning.
- ► Some of the most popular deep RL methods are policy-based.
- ► Form the foundation for modern algorithms:
 - ► REINFORCE
 - Actor-Critic
 - PPO, A3C, DDPG

Continuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Jumping Robots The Challenge of Locomotion

- ► One of the most intricate problems in robotics: learning to walk, run, and jump.
- Simulated robots have learned to jump over obstacle courses using deep reinforcement learning.
- ► Video example: https://www.youtube.com/watch?v=hx_bgoTF7bs1.

Human Analogy

Learning to walk takes human infants months, even though the body is optimized for it. Locomotion combines *perception*, *balance*, *and continuous control*. Robots face a much harder version of this challenge.

¹Nicolas Heess et al. 'Emergence of locomotion behaviours in rich environments'. In: arXiv preprint arXiv:1707.02286 (2017).

inuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Jumping Robots Why Locomotion Is Hard

- ► Locomotion is a **sequential decision problem**.
- Each leg has multiple joints that must:
 - Actuate in the right order.
 - ► Apply the right force and duration.
 - Rotate to the right angle.
- ► These control variables angles, forces, durations are all continuous.
- ► Algorithms must discover the **optimal continuous policy**.

Relevance

Policy-based deep reinforcement learning is widely used to train locomotion agents in simulation and real-world robotics.

Continuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Continuous Policies

From Discrete to Continuous Actions

- ▶ Earlier problems: small, **discrete** action spaces (e.g., Grid Worlds, Mazes, Atari: $\{N, E, S, W\}$ or joystick moves).
- Even complex games like Chess have discrete actions.
- ▶ In many real-world tasks, actions are instead continuous.

Shift in Focus

We now move from large state spaces to continuous action spaces.

Continuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Continuous Policies Examples of Continuous Actions

- ► **Self-driving cars:** steering angle, duration, and angular velocity must vary smoothly.
- ► Throttle control: continuous adjustment of acceleration and braking.
- ► Robotic joints: can rotate by 1°, 2°, 90°, or any value in between.

Challenge

An action can take any value in a continuous range (e.g., $[0,2\pi]$ or \mathbb{R}^+), making the space **infinitely large**.

Continuous Policies Stochastic Policies Gym and MudoCo REINFORCE

Continuous Policies Why Policy-Based Methods?

- ► Searching all combinations of continuous actions is infeasible.
- Discretization can approximate solutions but introduces quantization errors.
- ▶ In continuous domains, arg max can no longer identify "the" best action.
- ▶ Value-based methods fail when actions are not discrete.

Solution

Policy-based methods learn continuous or stochastic policies *directly*, without needing a value function or arg max.

Stochastic Policies

► Robots operate in **stochastic environments** – sensors and actuators introduce uncertainty.

- Example: a robot misjudges a door's distance or balance, leading to failure.
- Small noise in Q-values can cause large policy shifts in value-based methods.
 - Example:

$$Q(s, a_1) = 1.00, \ Q(s, a_2) = 0.99 \Rightarrow a_1$$

After small noise:

$$Q(s, a_1) = 0.99, \ Q(s, a_2) = 1.00 \Rightarrow a_2$$

- ▶ Tiny Q perturbation \Rightarrow abrupt action change.
- ► Leads to unstable/oscillating policies.
- ▶ Worse in spaces with continuous or similarly beneficial actions.
- ► Convergence requires **slow learning rates** to smooth randomness.

Stochastic Policies *Advantages of Stochastic Policies*

- ▶ Stochastic policies output a **distribution over actions** $\pi_{\theta}(a|s)$.
 - ▶ Instead of *choosing* a single best action, the agent *samples* actions according to $\pi_{\theta}(a|s)$.
- Naturally handle randomness in environment and action execution.
- ▶ Enable built-in exploration no need for ϵ -greedy or softmax sampling.
 - Sampling is exploration.
- Improve stability and prevent drastic policy oscillations.

Stochastic Policies

Limitations and Extensions

- ► Purely episodic policy-based methods can have **high variance**.
 - Return G_t depends on entire trajectory

$$G_t = r_t + \gamma r_{t+1} + \dots$$

- ► Small randomness early in the episode ⇒ large change in final return
- lacktriangle Each episode produces a different $G_t \Rightarrow$ noisy gradient estimate
- ► May converge to **local optima** rather than global ones.
- Often slower to converge than value-based methods.

Solution: Actor-Critic Methods

Newer algorithms combine value and policy learning for stability:

- ► A3C (Asynchronous Advantage Actor-Critic)
- ► TRPO (Trust Region Policy Optimization)
- ► PPO (Proximal Policy Optimization)

- ► Real-world robotics experiments are **expensive and slow**.
- ► Reinforcement learning often relies on simulated physics environments.
- ► Simulators approximate robot dynamics, forces, and interactions with the environment.
- Two popular simulators:
 - ► MuJoCo Multi-Joint dynamics with Contact²
 - ► **PyBullet** Open-source physics engine³
- ► Integrated with **OpenAl Gym** for standardized experimentation.

²Emanuel Todorov, Tom Erez, and Yuval Tassa. 'MuJoCo: A physics engine for model-based control'. In: *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*. 2012, pp. 5026–5033.

³Erwin Coumans and Yunfei Bai. *PyBullet, a Python module for physics simulation for games, robotics and machine learning.* http://pybullet.org. 2016-2019.

uous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Robotics Environments

Complexity Beyond Classic RL Tasks

- ▶ Unlike Grid World, Mountain Car, or CartPole, robotic tasks have:
 - Multiple joints and degrees of freedom
 - Continuous action spaces (angles, forces, durations)
 - ► Visuo-motor coordination (e.g., grasping)
 - Locomotion learning (walking, running, jumping)
- Environments are partly unpredictable agents must react to disturbances.

uous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Physics Simulation Models Why Simulate?

ing Simulate.

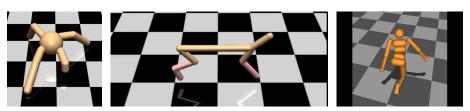
- ► Model-free RL requires millions of samples.
- ► This makes it infeasible on real robots.
- Physics engines simulate:
 - ► Forces, acceleration, velocity
 - Mass, elasticity, and friction
 - Grasping, locomotion, and gait
- ▶ Goals:
 - Accuracy realistic physical dynamics
 - Speed fast enough for RL training

HOUR Policies Stochastic Policies Gym and MuJoCo REINFORCE

MuJoCo Environments Examples

► MuJoCo is deterministic but typically uses randomized initial states.

- Resulting environments are non-deterministic overall.
- ► Common benchmark tasks in Gym/MuJoCo:
 - ► Ant 4-legged locomotion
 - ► Half-Cheetah 2D running
 - ► Humanoid full-body walking



Gym MuJoCo: Ant, Half-Cheetah, and Humanoid

Policy-Based Algorithm: REINFORCE

- ▶ Policy-based methods learn a parameterized policy π_{θ} that directly selects actions, without using a value function for action choice.
- ► Unlike value-based methods (which use arg max), these can naturally handle continuous actions.
- ▶ Policies are parameterized by θ (e.g., neural network weights) mapping states S to action probabilities A.

Continuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Intuitive Analogy: The Supermarket

The Supermarket Example

supermarket (Q-values) and follow the shortest path.

Policy-based: ask a local for a full set of directions (a trajectory) and

► Value-based: estimate how close each direction is to the

► Policy-based: ask a local for a full set of directions (a trajectory) and try to improve it.

Policy Optimization Framework

- Basic framework of policy-based algorithms
 - 1. Initialize policy parameters θ .
 - **2.** Sample a trajectory τ from π_{θ} .
 - **3.** If τ yields high reward, adjust θ toward τ ; otherwise, away.
 - 4. Repeat until convergence.
- ▶ Recall that value function $V^{\pi}(s_0)$ is the expected cumulative return from initial state s_0 .
- ▶ Natural to use $V^{\pi}(s_0)$ as performance objective $J(\theta)$.
- ▶ Goal: maximize performance objective $J(\theta) = V^{\pi}(s_0)$.
- ► Use gradient ascent:

$$\theta_{t+1} = \theta_t + \alpha \nabla_\theta J(\theta)$$

Gradient Ascent Optimization (Algorithm Sketch)

```
Input: J(\theta), learning rate \alpha Randomly initialize \theta repeat

Sample trajectory \tau
Compute gradient \nabla_{\theta}J(\theta)
Update: \theta \leftarrow \theta + \alpha \nabla_{\theta}J(\theta)
until convergence
```

Neural Network Policy Representation

- \blacktriangleright $\pi_{\theta}(a|s)$: probability of taking action a in state s.
- ▶ Represented by a neural network with parameters θ :
 - ► Input: state s.
- Output: action probabilities $\pi_{\theta}(a|s)$.
- \blacktriangleright Parameters θ define the mapping from states to actions.
- ▶ **Goal**: update θ so that π_{θ} becomes the optimal policy.
- ▶ Intuition: the better the action a, the more we should increase θ in that direction.

Ideal Update with Known Optimal Action

- ▶ Suppose we magically know the optimal action a^* for each state s.
- ► Then, we can update parameters toward the gradient of this optimal action:

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \pi_{\theta_t}(a^*|s)$$

- Adjust θ so that probability of best action is maximized.
- lacktriangle This pushes $\pi_{ heta}$ in the direction of the best possible action.
- ▶ However, in practice we do **not know** a^* .

Using Sample Trajectories Instead

- ▶ We can use sampled trajectories to estimate which actions are good.
- \blacktriangleright Replace the unknown a^* with a sampled action a and an estimated value:

$$\theta_{t+1} = \theta_t + \alpha \hat{\mathbf{Q}}(\mathbf{s}, \mathbf{a}) \nabla_{\theta} \pi_{\theta_t}(\mathbf{a}|\mathbf{s})$$

- ightharpoonup Adjust heta so that probability of sampled action is maximized.
- ▶ But scale the adjustment by the quality of that state-action pair.
- $\hat{Q}(s,a)$ can come from:
 - Estimated Q-function,
 - Discounted return, or
 - Advantage function.

Problem: Instability from Double Updates

- ▶ The policy $\pi_{\theta}(a|s)$ is itself a probability.
- ▶ In the previous update, high-value actions:
 - are pushed harder (large $\hat{Q}(s, a)$), and
 - occur more often (large $\pi_{\theta}(a|s)$).
- ► These actions are **doubly reinforced**, which may cause instability.
- ▶ **Fix**: normalize the update by dividing by $\pi_{\theta}(a|s)$:

$$\theta_{t+1} = \theta_t + \alpha \frac{\hat{Q}(s, a)}{\pi_{\theta}(a|s)} \nabla_{\theta} \pi_{\theta_t}(a|s)$$

which can also be written as

$$heta_{t+1} = heta_t + lpha \hat{Q}(s, a) rac{
abla_{ heta} \pi_{ heta_t}(a|s)}{\pi_{ heta}(a|s)}$$

From Gradients to Log-Gradients

► Use the calculus identity:

$$\nabla \log f(x) = \frac{\nabla f(x)}{f(x)}$$

► Substitute into the previous update:

$$\theta_{t+1} = \theta_t + \alpha \hat{Q}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)$$

- ► This is the core REINFORCE update rule⁴.
- ► REINFORCE updates similar to logarithmic cross-entropy loss.

⁴Ronald J Williams. 'Simple statistical gradient-following algorithms for connectionist reinforcement learning'. In: *Machine Learning* 8.3-4 (1992), pp. 229–256.

Understanding the REINFORCE Update

- $ightharpoonup \hat{Q}(s,a)$ acts as a weight stronger reward \Rightarrow larger parameter push.
- ▶ $\nabla_{\theta} \log \pi_{\theta}(a|s)$ points in the direction that increases the log-probability of good actions.

The update

$$\Delta \theta = \alpha \hat{Q}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)$$

increases the probability of actions that yield higher returns.

REINFORCE Algorithm (Monte Carlo Policy Gradient)

Algorithm 1 REINFORCE

- 1: Initialize policy parameters θ
- 2: for each episode do
- 3: Generate trajectory $(s_0, a_0, r_0, \dots, s_T)$ using π_{θ}
- 4: **for** t = T to 0 **do**
- 5: Compute return from step t onwards

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

6: Update policy parameters

$$\theta \leftarrow \theta + \alpha G_t \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$

- 7: end for
- 8: end for

REINFORCE Summary

- ► Improves policy directly no intermediate Q-function.
- ► Works for discrete, continuous, or stochastic actions.
- Known as Monte Carlo Policy Gradient since it uses sampled trajectories.
- \blacktriangleright $\pi_{\theta}(a|s)$ is a neural policy mapping states to action probabilities.
- lacktriangle The gradient ascent update adjusts heta to favor rewarding actions.
- ▶ Instability corrected by normalizing with $\pi_{\theta}(a|s)$.
- ▶ Using $\nabla \log \pi_{\theta}(a|s)$ yields the elegant and stable update rule

$$\theta_{t+1} = \theta_t + \alpha \hat{Q}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)$$

ontinuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Online vs Batch Updates

- ► Two main ways to update parameters in policy gradient methods:
 - 1. Online: update after each time step.
 - 2. Batch: update after completing the full trajectory.

ntinuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Online Updates

Parameters are updated inside the innermost loop.

- ► Each time step immediately affects the policy.
- ► Suitable for **parallel or streaming** environments.
- ► Ensures new information is used as soon as it becomes available.

Batch and Mini-Batch Updates

▶ Batch: accumulate all gradients over the trajectory, then update once.

- Reduces computational overhead of frequent updates.
- Mini-batch: compromise between online and batch.
- Balances:
 - Information efficiency (like online),
 - Computational efficiency (like batch).

Advantages of Policy-Based Methods

- ► Deep learning compatibility: Policy parameterization fits naturally with neural networks
- Stochastic policies: Naturally discover stochastic behavior (no ε-greedy needed).
- **Exploration**: Built-in stochasticity promotes exploration.
- ► Continuous actions: Work well with large or continuous action spaces.
- ▶ Smooth updates: Small $\Delta\theta$ ⇒ small $\Delta\pi$, improving stability.

Disadvantages of REINFORCE (Episodic Monte Carlo)

- ► Low bias, high variance: Full random episodes produce unbiased but noisy estimates.
- ► Low sample efficiency: Many trajectories needed to estimate gradients.
- ► **Slow convergence:** Few updates per trajectory, learning is slower than value-based methods.
- ► Local optima: May converge to suboptimal policies.

nuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Next Lecture

 $Improved\ policy-based\ methods.$