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Motivation: Continuous Action Spaces

» Deep RL has major successes in continuous action spaces:
» Robotics (e.g., robot arms)
» Self-driving cars
» Real-time strategy games
» These environments require actions over continuous ranges, not discrete
sets.




Examples of Continuous Action Spaces

» Robotics control: » Finance:
Joint angles, torque, or velocity. Portfolio weights as continuous
» Self-driving cars: allocations.
Steering, acceleration, braking. » Healthcare:
» Drone flight: Continuous dosage control (e.g.,
Continuous pitch, roll, yaw, insulin).

thrust. » Gaming and simulation:

» Industrial control: Throttle, aim, camera rotation.

Adjusting temperature or flow » Locomotion:
rate. Walking, running, or balancing




Limitation of Value-Based Methods

» Value-based RL (e.g., Q-learning, DQN):
1. Learns Q(s, a) for all actions.
2. Selects best action via arg max, Q(s, a).

» Works well for discrete actions.

> In continuous spaces:

» argmax is hard to compute.
» Learning becomes unstable.

» Need a method that handles continuous actions directly.




Policy-Based Methods: The Direct Approach

v

Skip value estimation — learn the policy directly.

v

Policy-based methods represent:

mo(als) = P(als; 0)

v

Model will directly output action probability.

v

Improve parameters 6 using gradient ascent.

v

Learn by playing episodes and improving the policy each time.




Why Policy-Based Methods?

» Advantages:

Work naturally with continuous actions.

Produce stochastic policies (smooth exploration).
Applicable to more domains than value-based methods.
Integrate well with gradient-based deep learning.

vV vy vy

» Some of the most popular deep RL methods are policy-based.
» Form the foundation for modern algorithms:

» REINFORCE
» Actor-Critic
» PPO, A3C, DDPG




Jumping Robots
The Challenge of Locomotion

» One of the most intricate problems in robotics: learning to walk, run,
and jump.

» Simulated robots have learned to jump over obstacle courses using deep
reinforcement learning.

» Video example: https://www.youtube.com/watch?v=hx_bgoTF7bs’.

Human Analogy

Learning to walk takes human infants months, even though the body is
optimized for it. Locomotion combines perception, balance, and continuous
control. Robots face a much harder version of this challenge.

!Nicolas Heess et al. ‘Emergence of locomotion behaviours in rich environments’.
arXiv preprint arXiv:1707.02286



https://www.youtube.com/watch?v=hx_bgoTF7bs

Jumping Robots
Why Locomotion Is Hard

Locomotion is a sequential decision problem.
Each leg has multiple joints that must:

» Actuate in the right order.
» Apply the right force and duration.
» Rotate to the right angle.

v

v

These control variables — angles, forces, durations — are all continuous.

v

Algorithms must discover the optimal continuous policy.

v

Relevance

Policy-based deep reinforcement learning is widely used to train locomotion
agents in simulation and real-world robotics.




Continuous Policies

Continuous Policies
From Discrete to Continuous Actions

» Earlier problems: small, discrete action spaces (e.g., Grid Worlds, Mazes,
Atari: {N,E,S, W} or joystick moves).
» Even complex games like Chess have discrete actions.

» In many real-world tasks, actions are instead continuous.

Shift in Focus

We now move from large state spaces to continuous action spaces.




Continuous Policies

Continuous Policies
Examples of Continuous Actions

» Self-driving cars: steering angle, duration, and angular velocity must
vary smoothly.

» Throttle control: continuous adjustment of acceleration and braking.

» Robotic joints: can rotate by 1°, 2°, 90°, or any value in between.

Challenge

An action can take any value in a continuous range (e.g., [0,27] or RT),
making the space infinitely large.




Continuous Policies

Continuous Policies
Why Policy-Based Methods?

v

Searching all combinations of continuous actions is infeasible.

v

Discretization can approximate solutions but introduces quantization
errors.
» In continuous domains, arg max can no longer identify “the” best action.

Value-based methods fail when actions are not discrete.

v

Solution

Policy-based methods learn continuous or stochastic policies directly,
without needing a value function or arg max.




Stochastic Policies

Stochastic Policies
Motivation

» Robots operate in stochastic environments — sensors and actuators
introduce uncertainty.

» Example: a robot misjudges a door’s distance or balance, leading to
failure.

» Small noise in Q-values can cause large policy shifts in value-based
methods.

» Example:
Q(s,a1) =1.00, Q(s,a2) =0.99 = a;

After small noise:

Q(s,a1) =0.99, Q(s,ax) =1.00 = a,

> Tiny Q perturbation = abrupt action change.
> Leads to unstable/oscillating policies.
» Worse in spaces with continuous or similarly beneficial actions.

» Convergence requires slow learning rates to smooth randomness.




Stochastic Policies

Stochastic Policies
Advantages of Stochastic Policies

» Stochastic policies output a distribution over actions 7y(als).
» Instead of choosing a single best action, the agent samples actions
according to mp(als).
» Naturally handle randomness in environment and action execution.
» Enable built-in exploration — no need for e-greedy or softmax sampling.
» Sampling is exploration.

» Improve stability and prevent drastic policy oscillations.




Stochastic Policies

Stochastic Policies
Limitations and Extensions

» Purely episodic policy-based methods can have high variance.
» Return G; depends on entire trajectory

Gr=r+res1+ ...

» Small randomness early in the episode = large change in final return
» Each episode produces a different G; = noisy gradient estimate

» May converge to local optima rather than global ones.
» Often slower to converge than value-based methods.

Solution: Actor—Critic Methods

Newer algorithms combine value and policy learning for stability:
» A3C (Asynchronous Advantage Actor—Critic)
» TRPO (Trust Region Policy Optimization)
» PPO (Proximal Policy Optimization)




Gym and MulJoCo

Policy-Based RL Environments
Gym and MuJoCo

> Real-world robotics experiments are expensive and slow.
» Reinforcement learning often relies on simulated physics environments.
» Simulators approximate robot dynamics, forces, and interactions with the
environment.
» Two popular simulators:
» MuJoCo - Multi-Joint dynamics with Contact?
» PyBullet — Open-source physics engine?
» Integrated with OpenAl Gym for standardized experimentation.

2Emanuel Todorov, Tom Erez, and Yuval Tassa. ‘MuJoCo: A physics engine for
model-based control’. IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS)
3Erwin Coumans and Yunfei Bai. PyBu//et a Python module for physics simulation for

games, robotics and machine learning.



http://pybullet.org

Gym and MulJoCo

Robotics Environments
Complexity Beyond Classic RL Tasks

» Unlike Grid World, Mountain Car, or CartPole, robotic tasks have:

» Multiple joints and degrees of freedom

» Continuous action spaces (angles, forces, durations)
» Visuo-motor coordination (e.g., grasping)

» Locomotion learning (walking, running, jumping)

» Environments are partly unpredictable — agents must react to

disturbances.
. an
K‘#




Gym and MulJoCo

Physics Simulation Models
Why Simulate?

v

Model-free RL requires millions of samples.

v

This makes it infeasible on real robots.

v

Physics engines simulate:
» Forces, acceleration, velocity
» Mass, elasticity, and friction
» Grasping, locomotion, and gait
Goals:
» Accuracy - realistic physical dynamics
» Speed — fast enough for RL training

v




Gym and MulJoCo

MuJdoCo Environments
Examples

» MulJoCo is deterministic but typically uses randomized initial states.
» Resulting environments are non-deterministic overall.

» Common benchmark tasks in Gym/MuJoCo:

» Ant — 4-legged locomotion
» Half-Cheetah — 2D running
» Humanoid — full-body walking

T,

Gym MuJoCo: Ant, Half-Cheetah, and Humanoid




REINFORCE

Policy-Based Algorithm: REINFORCE

» Policy-based methods learn a parameterized policy my that directly selects
actions, without using a value function for action choice.

» Unlike value-based methods (which use arg max), these can naturally
handle continuous actions.

» Policies are parameterized by 6 (e.g., neural network weights) mapping
states S to action probabilities A.




REINFORCE

Intuitive Analogy: The Supermarket

The Supermarket Example

» Value-based: estimate how close each direction is to the
supermarket (Q-values) and follow the shortest path.

» Policy-based: ask a local for a full set of directions (a trajectory) and
try to improve it.




REINFORCE

Policy Optimization Framework

v

Basic framework of policy-based algorithms

1. Initialize policy parameters 6.

2. Sample a trajectory 7 from .

3. If 7 yields high reward, adjust 6 toward 7; otherwise, away.
4. Repeat until convergence.

v

Recall that value function V™ (sp) is the expected cumulative return from
initial state sp.

v

Natural to use V™ (sp) as performance objective J(0).

» Goal: maximize performance objective J(0) = V™ (sp).

v

Use gradient ascent:
0t+1 = 91_— + OZVQJ(Q)




REINFORCE

Gradient Ascent Optimization (Algorithm Sketch)

Input: J(0), learning rate «
Randomly initialize 6
repeat
Sample trajectory T
Compute gradient VyJ(0)
Update: 0 < 6 + aVyJ(0)
until convergence




REINFORCE

Neural Network Policy Representation

» mg(als): probability of taking action a in state s.
» Represented by a neural network with parameters 0:
» Input: state s.
» Output: action probabilities my(als).
» Parameters 0 define the mapping from states to actions.
» Goal: update 0 so that my becomes the optimal policy.

» Intuition: the better the action a, the more we should increase 0 in that
direction.




REINFORCE

Ideal Update with Known Optimal Action

» Suppose we magically know the optimal action a* for each state s.

» Then, we can update parameters toward the gradient of this optimal
action:
9t+1 =0 + onmrgt(a*|s)

v

Adjust 0 so that probability of best action is maximized.

v

This pushes 7y in the direction of the best possible action.

» However, in practice we do not know a*.




REINFORCE

Using Sample Trajectories Instead

» We can use sampled trajectories to estimate which actions are good.

v

Replace the unknown a* with a sampled action a and an estimated value:

i1 = 0 + aQ(s, a) Vo, (a|s)

v

Adjust 0 so that probability of sampled action is maximized.

v

But scale the adjustment by the quality of that state-action pair.

Q(s, a) can come from:
» Estimated Q-function,
» Discounted return, or
» Advantage function.

v




REINFORCE

Problem: Instability from Double Updates

v

The policy mg(als) is itself a probability.
In the previous update, high-value actions:

» are pushed harder (large Q(s, a)), and
» occur more often (large my(als)).

v

v

These actions are doubly reinforced, which may cause instability.

v

Fix: normalize the update by dividing by my(als):

@(s, a)
mo(als)

Oir1 =0+« Vg, (als)

which can also be written as

Voo, (als)

Ht-‘rl - 9t + a©(57 a) W@(Q‘S)




REINFORCE

From Gradients to Log-Gradients

» Use the calculus identity:

Vf(x)
f(x)

Vlog f(x) =

» Substitute into the previous update:
Or1 = 0r + aQ(s, a) Vg log m(als)

» This is the core REINFORCE update rule*.
» REINFORCE updates similar to logarithmic cross-entropy loss.

*Ronald J Williams. ‘Simple statistical gradient-following algorithms for connectionist
reinforcement learning’. Machine Learning




REINFORCE

Understanding the REINFORCE Update

» Q(s,a) acts as a weight — stronger reward = larger parameter push.

» Vylogmg(als) points in the direction that increases the log-probability of
good actions.

The update
A0 = aQ(s,a)Vy log mg(als)

increases the probability of actions that yield higher returns.




REINFORCE

REINFORCE Algorithm (Monte Carlo Policy Gradient)

Algorithm 1 REINFORCE

1: Initialize policy parameters 6

2: for each episode do

3: Generate trajectory (so, ao, ro, - - -, ST) using mp
4: for t =T to 0 do

5 Compute return from step t onwards

Gt = re +Yrep1 + ’Y2ft+2 + e

@

Update policy parameters
0 < 0+ a G Vg logmo(ar|st)

7: end for
8. end for




REINFORCE

REINFORCE Summary

» Improves policy directly — no intermediate Q-function.
» Works for discrete, continuous, or stochastic actions.

» Known as Monte Carlo Policy Gradient since it uses sampled
trajectories.

» mg(als) is a neural policy mapping states to action probabilities.
» The gradient ascent update adjusts 6 to favor rewarding actions.
» Instability corrected by normalizing with mg(als).

» Using V log my(als) yields the elegant and stable update rule

0i11 = 0: + aQ(s, a) Vg log my(als)




REINFORCE

Online vs Batch Updates

» Two main ways to update parameters in policy gradient methods:

1. Online: update after each time step.
2. Batch: update after completing the full trajectory.




REINFORCE

Online Updates

v

Parameters are updated inside the innermost loop.

v

Each time step immediately affects the policy.

v

Suitable for parallel or streaming environments.

Ensures new information is used as soon as it becomes available.

v




REINFORCE

Batch and Mini-Batch Updates

v

Batch: accumulate all gradients over the trajectory, then update once.

v

Reduces computational overhead of frequent updates.

v

Mini-batch: compromise between online and batch.
Balances:

» Information efficiency (like online),
» Computational efficiency (like batch).

v




REINFORCE

Advantages of Policy-Based Methods

» Deep learning compatibility: Policy parameterization fits naturally with
neural networks.

» Stochastic policies: Naturally discover stochastic behavior (no e-greedy
needed).

» Exploration: Built-in stochasticity promotes exploration.
» Continuous actions: Work well with large or continuous action spaces.
» Smooth updates: Small Af = small Arx, improving stability.




REINFORCE

Disadvantages of REINFORCE (Episodic Monte Carlo)

» Low bias, high variance: Full random episodes produce unbiased but
noisy estimates.
» Low sample efficiency: Many trajectories needed to estimate gradients.

» Slow convergence: Few updates per trajectory, learning is slower than
value-based methods.

» Local optima: May converge to suboptimal policies.




REINFORCE

Next Lecture

Improved policy-based methods.
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