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Motivation: Continuous Action Spaces

I Deep RL has major successes in continuous action spaces:
I Robotics (e.g., robot arms)
I Self-driving cars
I Real-time strategy games

I These environments require actions over continuous ranges, not discrete
sets.
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Examples of Continuous Action Spaces

I Robotics control:

Joint angles, torque, or velocity.

I Self-driving cars:

Steering, acceleration, braking.

I Drone �ight:

Continuous pitch, roll, yaw,
thrust.

I Industrial control:

Adjusting temperature or �ow
rate.

I Finance:

Portfolio weights as continuous
allocations.

I Healthcare:

Continuous dosage control (e.g.,
insulin).

I Gaming and simulation:

Throttle, aim, camera rotation.

I Locomotion:

Walking, running, or balancing
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Limitation of Value-Based Methods

I Value-based RL (e.g., Q-learning, DQN):

1. Learns Q(s, a) for all actions.
2. Selects best action via argmaxa Q(s, a).

I Works well for discrete actions.

I In continuous spaces:
I argmax is hard to compute.
I Learning becomes unstable.

I Need a method that handles continuous actions directly.
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Policy-Based Methods: The Direct Approach

I Skip value estimation � learn the policy directly.

I Policy-based methods represent:

πθ(a|s) = P(a|s; θ)

I Model will directly output action probability.

I Improve parameters θ using gradient ascent.

I Learn by playing episodes and improving the policy each time.
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Why Policy-Based Methods?

I Advantages:
I Work naturally with continuous actions.
I Produce stochastic policies (smooth exploration).
I Applicable to more domains than value-based methods.
I Integrate well with gradient-based deep learning.

I Some of the most popular deep RL methods are policy-based.

I Form the foundation for modern algorithms:
I REINFORCE
I Actor-Critic
I PPO, A3C, DDPG



Continuous Policies Stochastic Policies Gym and MuJoCo REINFORCE

Jumping Robots
The Challenge of Locomotion

I One of the most intricate problems in robotics: learning to walk, run,

and jump.

I Simulated robots have learned to jump over obstacle courses using deep
reinforcement learning.

I Video example: https://www.youtube.com/watch?v=hx_bgoTF7bs1.

Human Analogy

Learning to walk takes human infants months, even though the body is
optimized for it. Locomotion combines perception, balance, and continuous

control. Robots face a much harder version of this challenge.

1Nicolas Heess et al. `Emergence of locomotion behaviours in rich environments'. In:
arXiv preprint arXiv:1707.02286 (2017).

https://www.youtube.com/watch?v=hx_bgoTF7bs
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Jumping Robots
Why Locomotion Is Hard

I Locomotion is a sequential decision problem.

I Each leg has multiple joints that must:
I Actuate in the right order.
I Apply the right force and duration.
I Rotate to the right angle.

I These control variables � angles, forces, durations � are all continuous.

I Algorithms must discover the optimal continuous policy.

Relevance

Policy-based deep reinforcement learning is widely used to train locomotion
agents in simulation and real-world robotics.
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Continuous Policies
From Discrete to Continuous Actions

I Earlier problems: small, discrete action spaces (e.g., Grid Worlds, Mazes,
Atari: {N,E , S ,W } or joystick moves).

I Even complex games like Chess have discrete actions.

I In many real-world tasks, actions are instead continuous.

Shift in Focus

We now move from large state spaces to continuous action spaces.
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Continuous Policies
Examples of Continuous Actions

I Self-driving cars: steering angle, duration, and angular velocity must
vary smoothly.

I Throttle control: continuous adjustment of acceleration and braking.

I Robotic joints: can rotate by 1◦, 2◦, 90◦, or any value in between.

Challenge

An action can take any value in a continuous range (e.g., [0, 2π] or R+),
making the space in�nitely large.
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Continuous Policies
Why Policy-Based Methods?

I Searching all combinations of continuous actions is infeasible.

I Discretization can approximate solutions but introduces quantization
errors.

I In continuous domains, argmax can no longer identify �the� best action.

I Value-based methods fail when actions are not discrete.

Solution

Policy-based methods learn continuous or stochastic policies directly,
without needing a value function or argmax.
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Stochastic Policies
Motivation

I Robots operate in stochastic environments � sensors and actuators
introduce uncertainty.

I Example: a robot misjudges a door's distance or balance, leading to
failure.

I Small noise in Q-values can cause large policy shifts in value-based
methods.

I Example:

Q(s, a1) = 1.00, Q(s, a2) = 0.99⇒ a1

After small noise:

Q(s, a1) = 0.99, Q(s, a2) = 1.00⇒ a2

I Tiny Q perturbation ⇒ abrupt action change.
I Leads to unstable/oscillating policies.
I Worse in spaces with continuous or similarly bene�cial actions.

I Convergence requires slow learning rates to smooth randomness.
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Stochastic Policies
Advantages of Stochastic Policies

I Stochastic policies output a distribution over actions πθ(a|s).
I Instead of choosing a single best action, the agent samples actions

according to πθ(a|s).

I Naturally handle randomness in environment and action execution.

I Enable built-in exploration � no need for ε-greedy or softmax sampling.
I Sampling is exploration.

I Improve stability and prevent drastic policy oscillations.
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Stochastic Policies
Limitations and Extensions

I Purely episodic policy-based methods can have high variance.
I Return Gt depends on entire trajectory

Gt = rt + γrt+1 + . . .

I Small randomness early in the episode ⇒ large change in �nal return
I Each episode produces a di�erent Gt ⇒ noisy gradient estimate

I May converge to local optima rather than global ones.
I Often slower to converge than value-based methods.

Solution: Actor�Critic Methods

Newer algorithms combine value and policy learning for stability:

I A3C (Asynchronous Advantage Actor�Critic)

I TRPO (Trust Region Policy Optimization)

I PPO (Proximal Policy Optimization)
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Policy-Based RL Environments
Gym and MuJoCo

I Real-world robotics experiments are expensive and slow.

I Reinforcement learning often relies on simulated physics environments.

I Simulators approximate robot dynamics, forces, and interactions with the
environment.

I Two popular simulators:
I MuJoCo � Multi-Joint dynamics with Contact2

I PyBullet � Open-source physics engine3

I Integrated with OpenAI Gym for standardized experimentation.

2Emanuel Todorov, Tom Erez, and Yuval Tassa. `MuJoCo: A physics engine for
model-based control'. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2012, pp. 5026�5033.

3Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simulation for
games, robotics and machine learning. http://pybullet.org. 2016�2019.

http://pybullet.org
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Robotics Environments
Complexity Beyond Classic RL Tasks

I Unlike Grid World, Mountain Car, or CartPole, robotic tasks have:
I Multiple joints and degrees of freedom
I Continuous action spaces (angles, forces, durations)
I Visuo-motor coordination (e.g., grasping)
I Locomotion learning (walking, running, jumping)

I Environments are partly unpredictable � agents must react to
disturbances.
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Physics Simulation Models
Why Simulate?

I Model-free RL requires millions of samples.

I This makes it infeasible on real robots.

I Physics engines simulate:
I Forces, acceleration, velocity
I Mass, elasticity, and friction
I Grasping, locomotion, and gait

I Goals:
I Accuracy � realistic physical dynamics
I Speed � fast enough for RL training
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MuJoCo Environments
Examples

I MuJoCo is deterministic but typically uses randomized initial states.

I Resulting environments are non-deterministic overall.

I Common benchmark tasks in Gym/MuJoCo:
I Ant � 4-legged locomotion
I Half-Cheetah � 2D running
I Humanoid � full-body walking

Gym MuJoCo: Ant, Half-Cheetah, and Humanoid
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Policy-Based Algorithm: REINFORCE

I Policy-based methods learn a parameterized policy πθ that directly selects
actions, without using a value function for action choice.

I Unlike value-based methods (which use argmax), these can naturally
handle continuous actions.

I Policies are parameterized by θ (e.g., neural network weights) mapping
states S to action probabilities A.
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Intuitive Analogy: The Supermarket

The Supermarket Example

I Value-based: estimate how close each direction is to the
supermarket (Q-values) and follow the shortest path.

I Policy-based: ask a local for a full set of directions (a trajectory) and
try to improve it.
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Policy Optimization Framework

I Basic framework of policy-based algorithms

1. Initialize policy parameters θ.
2. Sample a trajectory τ from πθ.
3. If τ yields high reward, adjust θ toward τ ; otherwise, away.
4. Repeat until convergence.

I Recall that value function V π(s0) is the expected cumulative return from
initial state s0.

I Natural to use V π(s0) as performance objective J(θ).

I Goal: maximize performance objective J(θ) = V π(s0).

I Use gradient ascent:
θt+1 = θt + α∇θJ(θ)
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Gradient Ascent Optimization (Algorithm Sketch)

Input: J(θ), learning rate α
Randomly initialize θ
repeat

Sample trajectory τ
Compute gradient ∇θJ(θ)
Update: θ ← θ + α∇θJ(θ)

until convergence
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Neural Network Policy Representation

I πθ(a|s): probability of taking action a in state s.
I Represented by a neural network with parameters θ:

I Input: state s.
I Output: action probabilities πθ(a|s).

I Parameters θ de�ne the mapping from states to actions.

I Goal: update θ so that πθ becomes the optimal policy.

I Intuition: the better the action a, the more we should increase θ in that
direction.
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Ideal Update with Known Optimal Action

I Suppose we magically know the optimal action a? for each state s.

I Then, we can update parameters toward the gradient of this optimal
action:

θt+1 = θt + α∇θπθt (a?|s)

I Adjust θ so that probability of best action is maximized.

I This pushes πθ in the direction of the best possible action.

I However, in practice we do not know a?.
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Using Sample Trajectories Instead

I We can use sampled trajectories to estimate which actions are good.

I Replace the unknown a? with a sampled action a and an estimated value:

θt+1 = θt + αQ̂(s, a)∇θπθt (a|s)

I Adjust θ so that probability of sampled action is maximized.

I But scale the adjustment by the quality of that state-action pair.

I Q̂(s, a) can come from:
I Estimated Q-function,
I Discounted return, or
I Advantage function.
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Problem: Instability from Double Updates

I The policy πθ(a|s) is itself a probability.

I In the previous update, high-value actions:
I are pushed harder (large Q̂(s, a)), and
I occur more often (large πθ(a|s)).

I These actions are doubly reinforced, which may cause instability.

I Fix: normalize the update by dividing by πθ(a|s):

θt+1 = θt + α
Q̂(s, a)

πθ(a|s)
∇θπθt (a|s)

which can also be written as

θt+1 = θt + αQ̂(s, a)
∇θπθt (a|s)

πθ(a|s)
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From Gradients to Log-Gradients

I Use the calculus identity:

∇ log f (x) =
∇f (x)

f (x)

I Substitute into the previous update:

θt+1 = θt + αQ̂(s, a)∇θ log πθ(a|s)

I This is the core REINFORCE update rule4.

I REINFORCE updates similar to logarithmic cross-entropy loss.

4Ronald J Williams. `Simple statistical gradient-following algorithms for connectionist
reinforcement learning'. In: Machine Learning 8.3-4 (1992), pp. 229�256.
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Understanding the REINFORCE Update

I Q̂(s, a) acts as a weight � stronger reward ⇒ larger parameter push.

I ∇θ log πθ(a|s) points in the direction that increases the log-probability of
good actions.

The update
∆θ = αQ̂(s, a)∇θ log πθ(a|s)

increases the probability of actions that yield higher returns.
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REINFORCE Algorithm (Monte Carlo Policy Gradient)

Algorithm 1 REINFORCE

1: Initialize policy parameters θ
2: for each episode do
3: Generate trajectory (s0, a0, r0, . . . , sT ) using πθ
4: for t = T to 0 do
5: Compute return from step t onwards

Gt = rt + γrt+1 + γ2rt+2 + · · ·

6: Update policy parameters

θ ← θ + αGt ∇θ log πθ(at |st)

7: end for

8: end for
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REINFORCE Summary

I Improves policy directly � no intermediate Q-function.

I Works for discrete, continuous, or stochastic actions.

I Known as Monte Carlo Policy Gradient since it uses sampled
trajectories.

I πθ(a|s) is a neural policy mapping states to action probabilities.

I The gradient ascent update adjusts θ to favor rewarding actions.

I Instability corrected by normalizing with πθ(a|s).

I Using ∇ log πθ(a|s) yields the elegant and stable update rule

θt+1 = θt + αQ̂(s, a)∇θ log πθ(a|s)
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Online vs Batch Updates

I Two main ways to update parameters in policy gradient methods:

1. Online: update after each time step.
2. Batch: update after completing the full trajectory.
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Online Updates

I Parameters are updated inside the innermost loop.

I Each time step immediately a�ects the policy.

I Suitable for parallel or streaming environments.

I Ensures new information is used as soon as it becomes available.
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Batch and Mini-Batch Updates

I Batch: accumulate all gradients over the trajectory, then update once.

I Reduces computational overhead of frequent updates.

I Mini-batch: compromise between online and batch.

I Balances:
I Information e�ciency (like online),
I Computational e�ciency (like batch).
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Advantages of Policy-Based Methods

I Deep learning compatibility: Policy parameterization �ts naturally with
neural networks.

I Stochastic policies: Naturally discover stochastic behavior (no ε-greedy
needed).

I Exploration: Built-in stochasticity promotes exploration.

I Continuous actions: Work well with large or continuous action spaces.

I Smooth updates: Small ∆θ ⇒ small ∆π, improving stability.
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Disadvantages of REINFORCE (Episodic Monte Carlo)

I Low bias, high variance: Full random episodes produce unbiased but
noisy estimates.

I Low sample e�ciency: Many trajectories needed to estimate gradients.

I Slow convergence: Few updates per trajectory, learning is slower than
value-based methods.

I Local optima: May converge to suboptimal policies.
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Next Lecture

Improved policy-based methods.
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