CS-866 Deep Reinforcement Learning

Stable Deep Value-Based Learning

Nazar Khan
Department of Computer Science
University of the Punjab

QN D QN Code Extensions

Stable Deep Value-Based Learning

From Instability to Convergence

- ► Early concerns about convergence discouraged research in deep reinforcement learning (DRL) for years.
- ► Researchers focused on **Linear function approximators** more stable, with convergence guarantees.
- ► Yet, work on convergent deep RL continued:
 - Neural fitted Q-learning¹
 - ► Actor-critic variants²'³
 - ► Early deep TD learning^{4'5}

¹Riedmiller, 'Neural fitted Q iteration—first experiences with a data efficient neural reinforcement learning method'.

²Bhatnagar et al., 'Convergent temporal-difference learning with arbitrary smooth function approximation'.

³ Maei et al., 'Toward off-policy learning control with function approximation'.

⁴Sallans and Hinton, 'Reinforcement learning with factored states and actions'.

⁵Heess, Silver, and Teh, 'Actor-critic reinforcement learning with energy-based policies'.

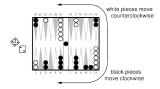
The Breakthrough: Deep Q-Networks (DQN) Reviving Deep RL

- ► Mnih et al. showed that:
 - ► Stable and convergent training is possible with deep networks.
 - ► Even on complex domains (e.g., Atari 2600).
- ► Triggered renewed exploration into:
 - ► Conditions enabling convergence
 - ► Techniques to overcome the **deadly triad**:
 - 1. Function approximation
 - 2. Bootstrapping
 - 3. Off-policy learning
- Led to stability-enhancing methods (e.g., replay buffers, target networks).

⁶Volodymyr Mnih et al. 'Human-level control through deep reinforcement learning'. *Nature* 518.7540 (2015), pp. 529–533.

Early Signs of Stable Learning The Case of TD-Gammon

- ▶ In the late 1980s–1990s, **Gerald Tesauro** developed:
 - ▶ **Neurogammon**: Supervised learning from expert Backgammon games⁷.
 - ► **TD-Gammon**: Reinforcement learning from **self-play** using temporal-difference updates⁸.
- Achieved stable learning with:
 - ► A **shallow network** (1 hidden layer)
 - Raw board input + heuristic features
 - ► TD-style value updates (like Q-learning)



⁷Tesauro, 'Neurogammon wins Computer Olympiad'.

⁸Tesauro, 'Temporal difference learning and TD-Gammon'.

Beyond Backgammon Limits of Early Success

- ► Attempts to reproduce TD-Gammon's success:
 - Checkers⁹
 - ► Go¹⁰,11
- ► These efforts largely **failed** to achieve stable learning.
- ► Hypothesis: Backgammon's randomness (dice rolls) may have:
 - Improved exploration
 - Smoothed the value landscape
- ► For years, it was believed that Backgammon was a **special case**.

⁹Kumar Chellapilla and David B Fogel. 'Evolving neural networks to play checkers without relying on expert knowledge'. In: *IEEE Transactions on Neural Networks* 10.6 (1999), pp. 1382–1391.

¹⁰ Ilya Sutskever and Vinod Nair. 'Mimicking Go experts with convolutional neural networks'. In: *International Conf. on Artificial Neural Networks*. Springer. 2008, pp. 101–110.

¹¹Christopher Clark and Amos Storkey. 'Teaching deep convolutional neural networks to play Go. arXiv preprint'. In: arXiv preprint arXiv:1412.3409 1 (2014).

Deep RL Matures

Towards Stable and Generalizable Learning

- ► Later work confirmed that stability is achievable in deep RL:
 - ► Atari: DQN and successors¹²
 - ► **Go**: AlphaGo and AlphaZero¹³
 - ► Continuous control: Deep actor-critic methods¹⁴
- Stable training and generalization are possible with:
 - Target networks
 - Experience replay
 - Regularization and diversity methods
- Ongoing research aims to further understand and enhance:
 - Convergence properties
 - Diversity and representation learning

¹²Volodymyr Mnih et al. 'Human-level control through deep reinforcement learning'. In: *Nature* 518.7540 (2015), pp. 529–533.

¹³David Silver et al. 'Mastering the game of Go without human knowledge'. In: *Nature* 550.7676 (2017), p. 354.

¹⁴Nicolas Heess, David Silver, and Yee Whye Teh. 'Actor-critic reinforcement learning with energy-based policies'. In: *European Workshop on Reinforcement Learning*. 2013, pp. 45–58.

Deep Q-Networks

- ► The DQN algorithm¹⁵ achieves stable and convergent training on complex domains using
 - experience replay, and
 - infrequent weight updates.

Focus of DQN

The original focus of DQN is on two things.

- 1. breaking correlations between subsequent states, and
- 2. slowing down changes to parameters to improve stability.

¹⁵Volodymyr Mnih et al. 'Human-level control through deep reinforcement learning'. Nature 518.7540 (2015), pp. 529-533.

Why are correlated states bad?

- ► Sequential agent-environment interactions create **highly correlated** training samples
- ► The network might be trained on too many samples of a certain kind or in a certain area.
- ▶ Other parts of the state space will remain under-explored.

We can reduce correlation – and the local minima they cause – by adding a small amount of supervised learning.

Experience Replay¹⁹

- ► To break correlations and to create a more diverse set of training examples, DQN uses experience replay.
- ► Introduces a *replay buffer*¹⁶ a cache of previously explored states.
- ► Randomly samples training states from the replay buffer.
- ► Biologically inspired¹⁷.
- ► Stores the last *N* examples in the replay memory, and samples uniformly when performing updates.
- ightharpoonup A typical¹⁸ number for N is 10⁶.
- ¹⁶Long-Ji Lin. 'Self-improving reactive agents based on reinforcement learning, planning and teaching'. In: *Machine Learning* 8.3-4 (1992), pp. 293–321.
- ¹⁷ James L McClelland, Bruce L McNaughton, and Randall C O'Reilly. 'Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory.' In: *Psychological Review* 102.3 (1995), p. 419.
- ¹⁸Shangtong Zhang and Richard S Sutton. 'A deeper look at experience replay'. In: arXiv preprint arXiv:1712.01275 (2017).
- ¹⁹Volodymyr Mnih et al. 'Playing Atari with deep reinforcement learning'. In: arXiv preprint arXiv:1312.5602 (2013).

Experience Replay

- ► Training becomes more dynamic and diverse compared to learning from the most recent state.
- ► Increases independence of subsequent training examples since next state to be trained on is no longer a direct successor of the current state.
- ► More coverage since it spreads out the learning over more previously seen states.
- ▶ **Less correlation** since it samples randomly from previous experiences.

Experience replay \implies off-policy learning

Experience replay is a form of off-policy learning, since the target parameters are different from those used to generate the sample.

Infrequent Weight Updates²⁰

- ▶ After every n updates, the network Q_{θ} is cloned to obtain a *target* network Q_{θ^-} , which is used for generating the targets for the following n updates to Q_{θ} .
- ▶ Weights θ^- of the target network change *n*-times slower than weights θ of the behavior policy.

Benefit of stable targets

Stable Q-targets lead to

- 1. reduced divergence,
- 2. reduced oscillations, and
- **3.** more stable parameters θ .

²⁰Volodymyr Mnih et al. 'Human-level control through deep reinforcement learning'. In: *Nature* 518.7540 (2015), pp. 529–533.

DQN Pseudocode

```
def dqn:
    initialize replay_buffer empty
    initialize Q network with random weights
    initialize Qt target network with random weights
    set. s = s0
    while not convergence:
        # DQN in Atari uses preprocessing; not shown
        epsilon-greedy select action a in argmax(Q(s,a)) #
            action selection depends on Q (moving target)
        sx, reward = execute action in environment
        append (s,a,r,sx) to buffer
        sample minibatch from buffer # break temporal
            correlation
        take target batch R (when terminal) or Qt
        do gradient descent step on Q # loss function uses
            target Qt network
```

Stable Baselines

- ▶ The environment is only half of the RL experiment.
- We also need an agent algorithm to learn the policy.
- ► OpenAl provided implementations of many RL algorithms, called Baselines²¹.
- ► Stable Baselines²² contains improved implementations of OpenAl's algorithms with more documentation²³ and other features.
- ► Almost all algorithms in this course can be found in Stable Baselines.

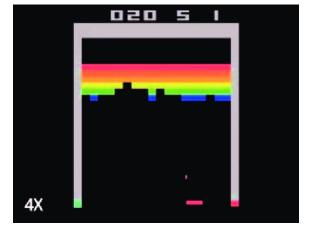
pip install stable-baselines

²¹https://github.com/openai/baselines

²²https://github.com/hill-a/stable-baselines

²³https://stable-baselines.readthedocs.io/en/master/

The Breakout Game



env.render()

Learning Breakout using a DQN Agent using Stable Baselines

```
from stable_baselines.common.atari_wrappers import make_atari
from stable_baselines.deepq.policies import MlpPolicy,
   CnnPolicy
from stable_baselines import DQN
env = make_atari('BreakoutNoFrameskip-v4')
model = DQN (CnnPolicy, env, verbose=1)
model.learn(total_timesteps=25000)
obs = env.reset()
while True:
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)
```

DQN Extensions

- ► DQN results spawned many refinements.
- Some in setting targets.
- Some in selecting training samples.
- Some in network architecture.
- ► Some in handling stochasticity.

Double Deep Q-Learning (DDQN)

- ▶ Deep Q-Learning may overestimate action values due to the max operation.
- DQN target is computed as

$$y^{\text{DQN}} = r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a; \theta^{-})$$

► We can rewrite it as

$$y^{\text{DQN}} = r_{t+1} + \gamma Q(s_{t+1}, \arg\max_{a} Q(s_{t+1}, a; \theta^{-}); \theta^{-})$$

▶ Same set of weights θ^- is used twice for action selection and evaluation.

Double Deep Q-Learning (DDQN)

- ► Double Deep Q-Learning²⁴
 - uses the Q-Network θ to choose the action, but
 - uses the separate target Q-Network θ^- to evaluate the action.
- Double DQN target is computed as

$$y^{\text{DDQN}} = r_{t+1} + \gamma Q(s_{t+1}, \arg\max_{a} Q(s_{t+1}, a; \theta); \theta^{-})$$

- ► Reduces overestimation caused by the max operator.
- Action that maximizes $Q(s_{t+1}, a; \theta)$ might not maximize $Q(s_{t+1}, a; \theta^-)$.

On 49 Atari games, DDQN achieved

- about twice the average score of DQN with the same hyperparameters, and
- ▶ four times the average DQN score with tuned hyperparameters.

²⁴Hado Van Hasselt, Arthur Guez, and David Silver. 'Deep Reinforcement Learning with Double Q-Learning'. In: *AAAI*. vol. 2. Phoenix, AZ. 2016, p. 5.

Prioritized Experience Replay (PEX)

- ► Instead of sampling uniformly from the replay buffer, use prioritized²⁵ sampling.
- ► Probability of picking *i*-th sample from the buffer is

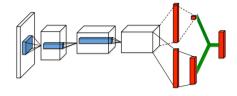
$$p_{i} = \frac{|e_{i}|^{a}}{\sum_{j=1}^{|B|} |e_{j}|^{a}}$$

where e_i is the TD-error for experience i and |B| is the size of the replay buffer.

- ► Sample with higher TD-error will have higher probability of being replayed.
- Parameter a controls the amount of prioritization ($a = 0 \implies$ uniform sampling).

²⁵Tom Schaul et al. 'Prioritized experience replay'. In: *International Conference on Learning Representations.* 2016.

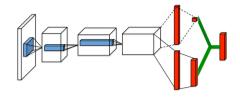
Dueling Double Deep Q-Learning²⁶ (DDDQN)



- ▶ Instead of directly estimating Q(s, a), network outputs 2 things:
 - **1.** State Value: V(s) how good it is to be in state s.
 - 2. Advantage: A(s, a) how much better action a is compared to others in state s.

²⁶Ziyu Wang et al. 'Dueling network architectures for deep reinforcement learning'. In: *International Conference on Machine Learning*. 2016, pp. 1995–2003.

Dueling Double Deep Q-Learning (DDDQN)



► The Q-value is then combined as

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \frac{1}{|A|} \sum_{a'} A(s, a'; \theta, \alpha)\right)$$

where θ denotes parameters of the *shared backbone*, α denotes parameters of the *advantage stream*, and β denotes parameters of the *value stream*.

Intuition

Faster learning of V(s) when actions don't matter.

The two streams *duel* to produce the final Q-values.

Dueling Double Deep Q-Learning (DDDQN)

- Combines tricks from DQN and DDQN.
- Experience replay and target networks from standard DQN.
- ► Double DQN target and update rule to reduce overestimation.
- ► Training target:

$$y^{\mathsf{DDDQN}} = y^{\mathsf{DDQN}}$$

and the network estimates Q(s, a) via V(s) and A(s, a).

► More stable, faster, and robust learning.

Distributional Deep Q-Learning Motivation

Standard DQN estimates expected return:

$$Q(s,a) = \mathbb{E}[G_t \mid s_t = s, a_t = a]$$

► This collapses uncertainty by ignoring the variability of outcomes.

Example

- ► Two actions might have the same expected reward $Q(s, a_i) = Q(s, a_i) = 5$.
- ▶ But one is always 5, while the other alternates between 0 and 10.
- ▶ DQN treats both actions as identical, which can limit performance.

Key Idea

Model the entire distribution of returns, not just its mean.

Distributional Reinforcement Learning Core Idea

▶ Predict distribution Z(s, a) over returns²⁷.

$$Q(s,a) = \mathbb{E}[Z(s,a)]$$

- ► Each action's value is a random variable.
- ► The Bellman operator now acts on distributions:

$$TZ(s,a) = R(s,a) + \gamma Z(s',a')$$

 $ightharpoonup a' = \operatorname{arg\,max}_{a'} \mathbb{E}[Z(s',a')]$

²⁷ Marc G Bellemare, Will Dabney, and Rémi Munos. 'A distributional perspective on reinforcement learning'. In: *International Conference on Machine Learning*. 2017, pp. 449–458.

C51 Algorithm Overview Bellemare et al. (2017)

1. Discretize return space:

$$z_i = v_{\min} + i \frac{v_{\max} - v_{\min}}{50}, \quad i = 0, \dots, 50$$

2. Network output: 51 categorical probabilities $(p_i = p(z_i))$

$$p(s,a) = [p_0, p_1, \ldots, p_{50}]$$

3. Bellman target:

$$TZ(s,a) = r + \gamma Z(s',a^*)$$

- 4. Projection: project target distribution back to fixed supports.
- 5. Loss: minimize KL-divergence

$$\mathcal{L} = D_{KL}(p(\cdot|s,a) \parallel \Pi TZ(\cdot|s,a))$$

C51: Intuition and Summary

- ► Learns a **histogram** of possible future returns.
- Captures uncertainty and risk.
- ► Each Q-value is computed as

$$Q(s,a) = \sum_{i} z_{i} p_{i}(s,a)$$

lacktriangle Provides richer learning signals \Rightarrow faster convergence.

Benefits

- Models uncertainty and multi-modal outcomes
- ► Stabilizes training

Summary Table DQN vs. Distributional DQN

Aspect	DQN	Distributional DQN (C51)
Output type	Scalar $Q(s,a)$	Probability distribution $p_i(s, a)$
Target	Expected return	Distribution of returns
Learning signal	Mean-squared TD error	KL divergence between distributions
Stability	Moderate	Higher (richer gradients)
Captures risk?	No	Yes

Noisy DQN

- ► Another distributional method is noisy DQN²⁸.
- Noisy DQN makes network layers stochastic by adding noise to the weights.
- ► Noise is controlled by learnable parameters.
- ► Noise induces randomness in the agent's policy, which increases exploration.

²⁸ Meire Fortunato et al. 'Noisy networks for exploration'. In: *International Conference on Learning Representations*. 2018.

Summary

- Deep Q-Learning suffers from instability and divergence due to the moving-targets problem.
- Correlated states introduce further inefficiency.
- The DQN paper used
 - frozen target networks to reduce the moving-targets issue, and
 - replay buffers to break temporal correlations.
- Spawned numerous extensions to achieve greater stability, speed, and robustness.
 - ► Double DQN to reduce overestimation from max operator.
 - ▶ PEX to learn more from samples with high TD error.
 - lacktriangle Dueling Double DQN for faster learning of V(s) when actions don't matter.
 - ▶ Distributional DQN for exploiting uncertainty of returns.